كيفية استخدام الدالة linearhypothesis() في r


يمكنك استخدام الدالة LinearHypothesis() من حزمة السيارة في R لاختبار الفرضيات الخطية في نموذج انحدار محدد.

تستخدم هذه الوظيفة بناء الجملة الأساسي التالي:

 linearHypothesis(fit, c(" var1=0 ", " var2=0 "))

يختبر هذا المثال تحديدًا ما إذا كانت معاملات الانحدار var1 و var2 في النموذج المسمى fit تساويان معًا الصفر.

يوضح المثال التالي كيفية استخدام هذه الوظيفة عمليًا.

مثال: كيفية استخدام الدالة LinearHypothesis() في R

لنفترض أن لدينا إطار البيانات التالي في R الذي يوضح عدد الساعات التي يقضيها في الدراسة، وعدد اختبارات التدريب التي تم إجراؤها، ودرجة الاختبار النهائي لـ 10 طلاب في الفصل:

 #create data frame
df <- data.frame(score=c(77, 79, 84, 85, 88, 99, 95, 90, 92, 94),
                 hours=c(1, 1, 2, 3, 2, 4, 4, 2, 3, 3),
                 prac_exams=c(2, 4, 4, 2, 4, 5, 4, 3, 2, 1))

#view data frame
df

   score hours prac_exams
1 77 1 2
2 79 1 4
3 84 2 4
4 85 3 2
5 88 2 4
6 99 4 5
7 95 4 4
8 90 2 3
9 92 3 2
10 94 3 1

لنفترض الآن أننا نريد ملاءمة نموذج الانحدار الخطي المتعدد التالي في R:

درجة الامتحان = β 0 + β 1 (ساعات) + β 2 (الاختبارات العملية)

يمكننا استخدام الدالة lm() لتكييف هذا النموذج:

 #fit multiple linear regression model
fit <- lm(score ~ hours + prac_exams, data=df)

#view summary of model
summary(fit)

Call:
lm(formula = score ~ hours + prac_exams, data = df)

Residuals:
    Min 1Q Median 3Q Max 
-5.8366 -2.0875 0.1381 2.0652 4.6381 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 72.7393 3.9455 18.436 3.42e-07 ***
hours 5.8093 1.1161 5.205 0.00125 ** 
prac_exams 0.3346 0.9369 0.357 0.73150    
---
Significant. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.59 on 7 degrees of freedom
Multiple R-squared: 0.8004, Adjusted R-squared: 0.7434 
F-statistic: 14.03 on 2 and 7 DF, p-value: 0.003553

لنفترض الآن أننا نريد اختبار ما إذا كان معامل الساعات واختبارات التدريب العملي كلاهما صفرًا.

يمكننا استخدام الدالة LinearHypothesis() للقيام بذلك:

 library (car)

#perform hypothesis test for hours=0 and prac_exams=0
linearHypothesis(fit, c(" hours=0 ", " prac_exams=0 "))

Linear hypothesis testing

Hypothesis:
hours = 0
prac_exams = 0

Model 1: restricted model
Model 2: score ~ hours + prac_exams

  Res.Df RSS Df Sum of Sq F Pr(>F)   
1 9 452.10                                
2 7 90.24 2 361.86 14.035 0.003553 **
---
Significant. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

يقوم اختبار الفرضية بإرجاع القيم التالية:

  • إحصائيات اختبار F : 14.035
  • القيمة p : .003553

يستخدم اختبار الفرضية هذا الفرضيات الفارغة والبديلة التالية:

  • H 0 : كلا معاملي الانحدار يساوي الصفر.
  • HA A : معامل انحدار واحد على الأقل لا يساوي الصفر.

وبما أن القيمة p للاختبار (0.003553) أقل من 0.05، فإننا نرفض الفرضية الصفرية.

بمعنى آخر، ليس لدينا ما يكفي من الأدلة لنقول إن معاملات الانحدار للساعات والامتحانات العملية تساوي الصفر.

مصادر إضافية

توفر البرامج التعليمية التالية معلومات إضافية حول الانحدار الخطي في R:

كيفية تفسير مخرجات الانحدار في R
كيفية إجراء الانحدار الخطي البسيط في R
كيفية إجراء الانحدار الخطي المتعدد في R
كيفية إجراء الانحدار اللوجستي في R

Add a Comment

ایمئیل یایینلانمایاجاق ایسته‎نیله‎ن بوشلوقلار خاللانمیشدیر *