如何在 python 中执行单比例 z 检验
单比例 z 检验用于将观察到的比例与理论比例进行比较。
该检验使用以下原假设:
- H 0 : p = p 0 (人口比例等于假设比例 p 0 )
备择假设可以是双边的、左的或右的:
- H 1 (双尾): p ≠ p 0 (总体比例不等于假设值 p 0 )
- H 1 (左): p < p 0 (人口比例小于假设值 p 0 )
- H 1 (右): p > p 0 (人口比例大于假设值 p 0 )
检验统计量计算如下:
z = (pp 0 ) / √ p 0 (1-p 0 )/n
金子:
- p:观察到的样本比例
- p 0 :假设的人口比例
- n:样本量
如果与 z 检验统计量对应的 p 值小于所选的显着性水平(常见选择为 0.10、0.05 和 0.01),则您可以拒绝原假设。
Python 中的一比例 Z 检验
要在Python中按比例执行z测试,我们可以使用statsmodels库中的proportions_ztest()函数,该函数使用以下语法:
比例_ztest(计数,nobs,值=无,替代=’两张脸’)
金子:
- count:成功次数
- nobs:尝试次数
- value:假设的人口比例
- 替代方案:替代假设
此函数返回 az 检验统计量和相应的 p 值。
以下示例演示如何使用此函数在 Python 中执行单比例 z 检验。
示例:Python 中的比例 Z 检验
假设我们想知道某个县支持某项法律的居民比例是否等于 60%。为了测试这一点,我们收集了随机样本的以下数据:
- p 0 :假设人口比例 = 0.60
- x:赞成该法律的居民:64
- n:样本量 = 100
以下代码展示了如何使用proportions_ztest函数对样本执行az测试:
#import proportions_ztest function from statsmodels. stats.proportion import proportions_ztest #perform one proportion z-test proportions_ztest(count= 60 , nobs= 100 , value= 0.64 ) (-0.8164965809277268, 0.41421617824252466)
从结果中,我们可以看到 z 检验统计量为-0.8165 ,相应的 p 值为0.4142 。由于该值不小于 α = 0.05,因此我们无法拒绝原假设。我们没有足够的证据表明支持该法律的居民比例与0.60不同。
其他资源
单一比例 Z 检验简介
一份比例 Z 检验计算器
如何在 Excel 中执行单比例 Z 检验
如何在 R 中执行单比例 Z 检验