So finden sie quartile in datensätzen mit gerader und ungerader länge


Quartile sind Werte, die einen Datensatz in vier gleiche Teile unterteilen.

Gehen Sie folgendermaßen vor, um das erste und dritte Quartil eines Datensatzes mit einer geraden Anzahl von Werten zu ermitteln:

  • Identifizieren Sie den Medianwert (den Durchschnitt der beiden Medianwerte).
  • Teilen Sie den Datensatz am Median in zwei Hälften
  • Q1 ist der Medianwert in der unteren Hälfte des Datensatzes (ohne Median).
  • Q3 ist der Medianwert in der oberen Hälfte des Datensatzes (ohne Median)

Gehen Sie folgendermaßen vor, um das erste und dritte Quartil eines Datensatzes mit einer ungeraden Anzahl von Werten zu ermitteln:

  • Identifizieren Sie den Medianwert (den Mittelwert)
  • Teilen Sie den Datensatz am Median in zwei Hälften
  • Q1 ist der Medianwert in der unteren Hälfte des Datensatzes (ohne Median).
  • Q3 ist der Medianwert in der oberen Hälfte des Datensatzes (ohne Median)

Die folgenden Beispiele zeigen, wie Quartile für beide Arten von Datensätzen berechnet werden.

Hinweis : Bei der Berechnung von Quartilen berücksichtigen einige Formeln den Medianwert. Wie Wikipedia anmerkt, gibt es tatsächlich keine allgemeingültige Einigung darüber, wie Quartile für diskrete Verteilungen berechnet werden. Die hier geteilten Formeln werden von TI-84-Rechnern verwendet, weshalb wir uns für deren Verwendung entschieden haben.

Beispiel 1: Berechnen Sie Quartile für einen Datensatz mit gerader Länge

Angenommen, wir haben den folgenden Datensatz mit zehn Werten:

Daten: 3, 3, 6, 8, 10, 14, 16, 16, 19, 24

Der Medianwert ist der Durchschnitt der beiden Medianwerte, also (10 + 14) / 2 = 12.

Wir werden diesen Medianwert bei der Berechnung der Quartile nicht berücksichtigen.

Das erste Quartil ist der Median der unteren Hälfte der Werte, der sich als 6 ergibt:

Q1 = 3, 3, 6 , 8, 10

Das dritte Quartil ist der Median der oberen Hälfte der Werte, der 16 beträgt:

Q3 = 14, 16, 16 , 19, 24

Das erste und dritte Quartil dieses Datensatzes sind also 6 bzw. 16.

Beispiel 2: Quartile für einen Datensatz ungerader Länge berechnen

Angenommen, wir haben den folgenden Datensatz mit neun Werten:

Daten: 3, 3, 6, 8, 10, 14, 16, 16, 19

Der Medianwert ist der Wert direkt in der Mitte: 10.

Wir werden diesen Medianwert bei der Berechnung der Quartile nicht berücksichtigen.

Das erste Quartil ist der Median der unteren Hälfte der Werte. Da es in der Mitte zwei Werte gibt, nehmen wir den Durchschnitt, der sich als (3 + 6) / 2 = 4,5 herausstellt:

Q1 = 3, 3 , 6 , 8

Das dritte Quartil ist der Median der oberen Hälfte der Werte. Da es in der Mitte zwei Werte gibt, nehmen wir den Durchschnitt, der sich als (16 + 16) / 2 = 16 herausstellt:

Q3 = 14, 16 , 16 , 19

Das erste und dritte Quartil dieses Datensatzes betragen also 4,5 bzw. 16.

Zusätzliche Ressourcen

Die folgenden Tutorials erklären, wie man Quartile eines Datensatzes mit unterschiedlicher Statistiksoftware findet:

So berechnen Sie Quartile in Excel
So berechnen Sie Quartile in R
So berechnen Sie Quartile in SAS

Einen Kommentar hinzufügen

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert