Distribusi kemungkinan
Artikel ini menjelaskan apa itu distribusi probabilitas dalam statistik. Jadi, Anda akan menemukan definisi distribusi probabilitas, contoh distribusi probabilitas, dan berbagai jenis distribusi probabilitas.
Apa yang dimaksud dengan distribusi probabilitas?
Distribusi probabilitas adalah fungsi yang menentukan probabilitas terjadinya setiap nilai variabel acak . Sederhananya, distribusi probabilitas adalah fungsi matematika yang menggambarkan probabilitas semua kemungkinan hasil percobaan acak.
Misalnya, biarkan
Oleh karena itu, distribusi probabilitas sering digunakan dalam teori probabilitas dan statistik, karena digunakan untuk menghitung probabilitas berbagai peristiwa dalam ruang sampel .
Jenis distribusi probabilitas
Distribusi probabilitas dapat dibagi menjadi dua jenis: distribusi diskrit dan distribusi kontinu.
- Distribusi probabilitas diskrit: Distribusi hanya dapat mengambil sejumlah nilai yang dapat dihitung dalam suatu interval. Biasanya, distribusi probabilitas diskrit hanya dapat mengambil nilai integer, yaitu tidak memiliki tempat desimal.
- Distribusi probabilitas berkelanjutan: Distribusi dapat mengambil nilai dalam jumlah tak terbatas dalam suatu interval. Secara umum, distribusi probabilitas kontinu dapat mengambil nilai desimal.
Distribusi probabilitas diskrit
Distribusi probabilitas diskrit adalah distribusi yang menentukan probabilitas suatu variabel acak diskrit. Oleh karena itu, distribusi probabilitas diskrit hanya dapat mengambil sejumlah nilai yang terbatas (biasanya nilai integer).
Distribusi seragam yang diskrit
Distribusi seragam diskrit adalah distribusi probabilitas diskrit yang semua nilainya mempunyai peluang yang sama, yaitu dalam distribusi seragam diskrit semua nilai mempunyai peluang kemunculan yang sama.
Misalnya, pelemparan sebuah dadu dapat didefinisikan dengan distribusi seragam diskrit, karena semua kemungkinan hasil (1, 2, 3, 4, 5, atau 6) mempunyai peluang terjadinya yang sama.
Secara umum, distribusi seragam diskrit memiliki dua parameter karakteristik, a dan b , yang menentukan kisaran nilai yang mungkin diambil oleh distribusi tersebut. Jadi, ketika suatu variabel didefinisikan oleh distribusi seragam diskrit, maka ditulis Uniform(a,b) .
Distribusi seragam diskrit dapat digunakan untuk menggambarkan percobaan acak karena jika semua hasil mempunyai peluang yang sama, berarti percobaan tersebut acak.
Distribusi Bernoulli
Distribusi Bernoulli , juga dikenal sebagai distribusi dikotomis , adalah distribusi probabilitas yang mewakili variabel diskrit yang hanya dapat mempunyai dua hasil: “berhasil” atau “gagal”.
Pada distribusi Bernoulli, “sukses” adalah hasil yang kita harapkan dan bernilai 1, sedangkan hasil “kegagalan” adalah hasil selain yang diharapkan dan bernilai 0. Jadi, jika peluang hasil “ sukses” adalah p , probabilitas hasil “kegagalan” adalah q=1-p .
Distribusi Bernoulli dinamai menurut ahli statistik Swiss Jacob Bernoulli.
Dalam statistik, distribusi Bernoulli terutama memiliki satu penerapan: menentukan probabilitas eksperimen yang hanya memiliki dua kemungkinan hasil: sukses dan gagal. Jadi percobaan yang menggunakan distribusi Bernoulli disebut uji Bernoulli atau percobaan Bernoulli.
Distribusi binomial
Distribusi binomial , juga disebut distribusi binomial , adalah distribusi probabilitas yang menghitung jumlah keberhasilan ketika melakukan serangkaian eksperimen independen dan dikotomis dengan probabilitas keberhasilan yang konstan. Dengan kata lain, distribusi binomial adalah distribusi yang menggambarkan banyaknya hasil sukses dari suatu rangkaian percobaan Bernoulli.
Misalnya, berapa kali “kepala” muncul ketika sebuah koin dilempar sebanyak 25 kali adalah distribusi binomial.
Secara umum, jumlah percobaan yang dilakukan ditentukan dengan parameter n , sedangkan p adalah probabilitas keberhasilan setiap percobaan. Jadi, variabel acak yang mengikuti distribusi binomial ditulis sebagai berikut:
Perhatikan bahwa dalam distribusi binomial, percobaan yang sama persis diulang sebanyak n kali dan percobaan-percobaan tersebut independen satu sama lain, sehingga peluang keberhasilan setiap percobaan adalah sama (p) .
Distribusi ikan
Distribusi Poisson adalah distribusi probabilitas yang mendefinisikan probabilitas sejumlah kejadian tertentu yang terjadi selama periode waktu tertentu. Dengan kata lain, distribusi Poisson digunakan untuk memodelkan variabel acak yang menggambarkan berapa kali suatu fenomena berulang dalam suatu interval waktu.
Misalnya, jumlah panggilan yang diterima sentral telepon per menit adalah variabel acak diskrit yang dapat ditentukan menggunakan distribusi Poisson.
Distribusi Poisson mempunyai parameter karakteristik, diwakili oleh huruf Yunani λ dan menunjukkan berapa kali peristiwa yang diteliti diperkirakan terjadi selama interval tertentu.
distribusi multinomial
Distribusi multinomial (atau distribusi multinomial ) adalah distribusi probabilitas yang menggambarkan probabilitas beberapa peristiwa yang saling eksklusif terjadi beberapa kali setelah beberapa kali percobaan.
Artinya, jika suatu eksperimen acak dapat menghasilkan tiga atau lebih peristiwa eksklusif dan probabilitas setiap peristiwa terjadi secara terpisah diketahui, maka distribusi multinomial digunakan untuk menghitung probabilitas bahwa ketika beberapa eksperimen dilakukan, sejumlah peristiwa tertentu akan terjadi. waktu setiap saat.
Oleh karena itu, distribusi multinomial merupakan generalisasi dari distribusi binomial.
distribusi geometris
Distribusi geometri adalah distribusi probabilitas yang menentukan jumlah percobaan Bernoulli yang diperlukan untuk memperoleh hasil pertama yang berhasil. Artinya, suatu proses model distribusi geometri dimana percobaan Bernoulli diulangi sampai salah satunya memperoleh hasil yang positif.
Misalnya banyaknya mobil yang lewat di jalan raya sampai terlihat mobil berwarna kuning merupakan distribusi geometri.
Ingatlah bahwa uji Bernoulli adalah eksperimen yang mempunyai dua kemungkinan hasil: “berhasil” dan “gagal”. Jadi jika peluang “berhasil” adalah p , peluang “gagal” adalah q=1-p .
Oleh karena itu, distribusi geometri bergantung pada parameter p , yang merupakan probabilitas keberhasilan semua eksperimen yang dilakukan. Selain itu, probabilitas p adalah sama untuk semua percobaan.
distribusi binomial negatif
Distribusi binomial negatif adalah distribusi probabilitas yang menggambarkan jumlah percobaan Bernoulli yang diperlukan untuk memperoleh sejumlah hasil positif.
Oleh karena itu, distribusi binomial negatif memiliki dua parameter karakteristik: r adalah jumlah hasil sukses yang diinginkan dan p adalah probabilitas keberhasilan setiap percobaan Bernoulli yang dilakukan.
Jadi, distribusi binomial negatif mendefinisikan suatu proses di mana percobaan Bernoulli dilakukan sebanyak yang diperlukan untuk mendapatkan hasil yang positif. Selain itu, semua uji coba Bernoulli ini bersifat independen dan memiliki kemungkinan keberhasilan yang konstan.
Misalnya, variabel acak yang mengikuti distribusi binomial negatif adalah berapa kali sebuah dadu harus dilempar hingga angka 6 dilempar tiga kali.
distribusi hipergeometri
Distribusi hipergeometri adalah distribusi probabilitas yang menggambarkan jumlah kasus yang berhasil dalam ekstraksi acak tanpa penggantian n elemen dari suatu populasi.
Artinya, distribusi hipergeometri digunakan untuk menghitung probabilitas memperoleh x keberhasilan ketika mengekstraksi n elemen dari suatu populasi tanpa mengganti salah satu elemen tersebut.
Oleh karena itu, distribusi hipergeometri memiliki tiga parameter:
- N : banyaknya elemen dalam populasi (N = 0, 1, 2,…).
- K : adalah jumlah kasus keberhasilan maksimum (K = 0, 1, 2,…,N). Karena dalam distribusi hipergeometri suatu elemen hanya dapat dianggap sebagai “berhasil” atau “gagal”, NK adalah jumlah maksimum kasus kegagalan.
- n : adalah jumlah pengambilan tanpa penggantian yang dilakukan.
Distribusi probabilitas berkelanjutan
Distribusi probabilitas kontinu adalah distribusi yang dapat mengambil nilai apa pun dalam suatu interval, termasuk nilai desimal. Oleh karena itu, distribusi probabilitas kontinu menentukan probabilitas variabel acak kontinu.
distribusi yang seragam dan berkesinambungan
Distribusi seragam kontinu , disebut juga distribusi persegi panjang , adalah jenis distribusi probabilitas kontinu yang semua nilai mempunyai peluang kemunculan yang sama. Dengan kata lain, distribusi seragam kontinu adalah distribusi yang peluangnya terdistribusi secara merata pada suatu interval.
Distribusi seragam kontinu digunakan untuk menggambarkan variabel kontinu yang mempunyai probabilitas konstan. Demikian pula distribusi seragam kontinu digunakan untuk mendefinisikan proses acak, karena jika semua hasil mempunyai probabilitas yang sama, berarti ada keacakan pada hasilnya.
Distribusi seragam kontinu memiliki dua parameter karakteristik, a dan b , yang menentukan interval ekuiprobabilitas. Jadi, lambang distribusi seragam kontinu adalah U(a,b) , dimana a dan b adalah nilai karakteristik dari distribusi tersebut.
Misalnya, jika hasil percobaan acak dapat bernilai antara 5 dan 9 dan semua hasil yang mungkin mempunyai peluang terjadinya yang sama, maka percobaan dapat disimulasikan dengan distribusi seragam kontinu U(5.9).
Distribusi normal
Distribusi normal adalah distribusi probabilitas kontinu yang grafiknya berbentuk lonceng dan simetris terhadap meannya. Dalam statistika, distribusi normal digunakan untuk memodelkan fenomena dengan karakteristik yang sangat berbeda, oleh karena itu distribusi ini sangat penting.
Faktanya, dalam statistika, distribusi normal sejauh ini dianggap sebagai distribusi yang paling penting dari semua distribusi probabilitas, karena distribusi tersebut tidak hanya dapat memodelkan sejumlah besar fenomena dunia nyata, namun distribusi normal juga dapat digunakan untuk memperkirakan jenis-jenis distribusi probabilitas lainnya. distribusi. dalam kondisi tertentu.
Simbol distribusi normal adalah huruf kapital N. Jadi, untuk menunjukkan bahwa suatu variabel mengikuti distribusi normal, ditandai dengan huruf N dan nilai rata-rata aritmatika dan simpangan bakunya ditambahkan dalam tanda kurung.
Distribusi normal memiliki banyak nama berbeda, antara lain Distribusi Gaussian , Distribusi Gaussian , dan Distribusi Laplace-Gauss .
Distribusi lognormal
Distribusi lognormal , atau distribusi lognormal , adalah distribusi probabilitas yang mendefinisikan variabel acak yang logaritmanya mengikuti distribusi normal.
Oleh karena itu, jika variabel X berdistribusi normal, maka fungsi eksponensial e x berdistribusi lognormal.
Perhatikan bahwa distribusi lognormal hanya dapat digunakan jika nilai variabelnya positif, karena logaritma adalah fungsi yang hanya menerima satu argumen positif.
Di antara berbagai penerapan distribusi lognormal dalam statistik, kami membedakan penggunaan distribusi ini untuk menganalisis investasi keuangan dan melakukan analisis keandalan.
Distribusi lognormal disebut juga distribusi Tinaut , terkadang juga ditulis sebagai distribusi lognormal atau distribusi log-normal .
Distribusi chi-kuadrat
Distribusi Chi-kuadrat merupakan distribusi probabilitas yang simbolnya adalah χ². Lebih tepatnya, distribusi Chi-kuadrat adalah jumlah kuadrat dari k variabel acak independen yang berdistribusi normal.
Jadi, distribusi Chi-kuadrat mempunyai k derajat kebebasan. Oleh karena itu, distribusi Chi-kuadrat mempunyai derajat kebebasan yang sama dengan jumlah kuadrat dari variabel-variabel berdistribusi normal yang diwakilinya.
Distribusi Chi-kuadrat juga dikenal sebagai distribusi Pearson .
Distribusi chi-kuadrat banyak digunakan dalam inferensi statistik, misalnya dalam pengujian hipotesis dan interval kepercayaan. Kita akan melihat di bawah apa saja penerapan jenis distribusi probabilitas ini.
Distribusi t siswa
Distribusi t Student adalah distribusi probabilitas yang banyak digunakan dalam statistik. Secara khusus, distribusi t Student digunakan dalam uji t Student untuk menentukan perbedaan antara rata-rata dua sampel dan untuk menetapkan interval kepercayaan.
Distribusi t Student dikembangkan oleh ahli statistik William Sealy Gosset pada tahun 1908 dengan nama samaran “Student”.
Distribusi t Student ditentukan oleh jumlah derajat kebebasannya, yang diperoleh dengan mengurangkan satu satuan dari jumlah total observasi. Oleh karena itu, rumus untuk menentukan derajat kebebasan distribusi t Student adalah ν=n-1 .
Distribusi Snedecor F
Distribusi Snedecor F , juga disebut distribusi Fisher – Snedecor F atau sederhananya distribusi F , adalah distribusi probabilitas kontinu yang digunakan dalam inferensi statistik, khususnya dalam analisis varians.
Salah satu sifat distribusi Snedecor F adalah distribusi tersebut ditentukan oleh nilai dua parameter nyata, m dan n , yang menunjukkan derajat kebebasannya. Jadi, simbol distribusi Snedecor F adalah F m,n , dengan m dan n adalah parameter yang menentukan distribusi tersebut.
Distribusi Fisher-Snedecor F mendapatkan namanya dari ahli statistik Inggris Ronald Fisher dan ahli statistik Amerika George Snedecor.
Dalam statistik, distribusi Fisher-Snedecor F memiliki penerapan berbeda. Misalnya, distribusi Fisher-Snedecor F digunakan untuk membandingkan model regresi linier yang berbeda, dan distribusi probabilitas ini digunakan dalam analisis varians (ANOVA).
distribusi eksponensial
Distribusi eksponensial merupakan distribusi probabilitas kontinu yang digunakan untuk memodelkan waktu tunggu terjadinya suatu fenomena acak.
Lebih tepatnya, distribusi eksponensial memungkinkan untuk menggambarkan waktu tunggu antara dua fenomena yang mengikuti distribusi Poisson. Oleh karena itu, distribusi eksponensial berkaitan erat dengan distribusi Poisson.
Distribusi eksponensial mempunyai parameter karakteristik, diwakili oleh huruf Yunani λ dan menunjukkan berapa kali peristiwa yang diteliti diperkirakan terjadi selama periode waktu tertentu.
Demikian pula distribusi eksponensial juga digunakan untuk memodelkan waktu hingga terjadi kegagalan. Oleh karena itu, distribusi eksponensial memiliki beberapa penerapan dalam teori keandalan dan kelangsungan hidup.
Distribusi Beta
Distribusi beta adalah distribusi probabilitas yang ditentukan dalam interval (0,1) dan diparameterisasi oleh dua parameter positif: α dan β. Dengan kata lain, nilai distribusi beta bergantung pada parameter α dan β.
Oleh karena itu, distribusi beta digunakan untuk mendefinisikan variabel acak kontinu yang nilainya antara 0 dan 1.
Ada beberapa notasi untuk menunjukkan bahwa variabel acak kontinu diatur oleh distribusi beta, yang paling umum adalah:
Secara statistik, distribusi beta memiliki penerapan yang sangat bervariasi. Misalnya, distribusi beta digunakan untuk mempelajari variasi persentase dalam sampel yang berbeda. Demikian pula dalam manajemen proyek, distribusi beta digunakan untuk melakukan analisis Pert.
Distribusi gamma
Distribusi gamma adalah distribusi probabilitas kontinu yang ditentukan oleh dua parameter karakteristik, α dan λ. Dengan kata lain, distribusi gamma bergantung pada nilai kedua parameternya: α adalah parameter bentuk dan λ adalah parameter skala.
Simbol distribusi gamma adalah huruf kapital Yunani Γ. Jadi, jika suatu variabel acak mengikuti distribusi gamma, ditulis sebagai berikut:
Distribusi gamma juga dapat diparameterisasi menggunakan parameter bentuk k = α dan parameter skala terbalik θ = 1/λ. Dalam semua kasus, dua parameter yang menentukan distribusi gamma adalah bilangan real positif.
Biasanya, distribusi gamma digunakan untuk memodelkan kumpulan data yang condong ke kanan, sehingga terdapat konsentrasi data yang lebih besar di sisi kiri plot. Misalnya distribusi gamma digunakan untuk memodelkan keandalan komponen listrik.
Distribusi Weibull
Distribusi Weibull adalah distribusi probabilitas kontinu yang ditentukan oleh dua parameter karakteristik: parameter bentuk α dan parameter skala λ.
Dalam statistik, distribusi Weibull terutama digunakan untuk analisis kelangsungan hidup. Demikian pula distribusi Weibull memiliki banyak penerapan di berbagai bidang.
Menurut penulis, distribusi Weibull juga dapat diparameterisasi dengan tiga parameter. Kemudian, parameter ketiga yang disebut nilai ambang batas ditambahkan, yang menunjukkan absis di mana grafik distribusi dimulai.
Nama Distribusi Weibull diambil dari nama Waloddi Weibull dari Swedia, yang mendeskripsikannya secara rinci pada tahun 1951. Namun, distribusi Weibull ditemukan oleh Maurice Fréchet pada tahun 1927 dan pertama kali diterapkan oleh Rosin dan Rammler pada tahun 1933.
Distribusi Pareto
Distribusi Pareto adalah distribusi probabilitas kontinu yang digunakan dalam statistik untuk memodelkan prinsip Pareto. Oleh karena itu, distribusi Pareto merupakan distribusi probabilitas yang memiliki beberapa nilai yang probabilitas kemunculannya jauh lebih tinggi dibandingkan nilai lainnya.
Ingatlah bahwa hukum Pareto, disebut juga aturan 80-20, adalah prinsip statistik yang menyatakan bahwa sebagian besar penyebab suatu fenomena disebabkan oleh sebagian kecil populasi.
Distribusi Pareto mempunyai dua parameter karakteristik: parameter skala x m dan parameter bentuk α.
Awalnya, distribusi Pareto digunakan untuk menggambarkan distribusi kekayaan dalam suatu populasi, karena sebagian besar disebabkan oleh sebagian kecil populasi. Namun saat ini Distribusi Pareto mempunyai banyak penerapan, misalnya dalam pengendalian kualitas, di bidang ekonomi, di bidang sains, di bidang sosial, dll.