5 esempi concreti della distribuzione di poisson
La distribuzione di Poisson è una distribuzione di probabilità utilizzata per modellare la probabilità che un certo numero di eventi si verifichino durante un intervallo di tempo fisso quando è noto che gli eventi si verificano in modo indipendente e con un tasso medio costante.
In questo articolo condividiamo 5 esempi di come viene utilizzata la distribuzione di Poisson nel mondo reale.
Esempio 1: chiamate all’ora in un call center
I call center utilizzano la distribuzione di Poisson per modellare il numero previsto di chiamate all’ora che riceveranno per sapere quanti rappresentanti del call center dovrebbero mantenere in organico.
Ad esempio, supponiamo che un determinato call center riceva 10 chiamate all’ora. Possiamo utilizzare un calcolatore della distribuzione di Poisson per trovare la probabilità che un call center riceva 0, 1, 2, 3… chiamate in una determinata ora:
- P(X = 0 chiamate) = 0,00005
- P(X = 1 chiamata) = 0,00045
- P(X = 2 chiamate) = 0,00227
- P(X = 3 chiamate) = 0,00757
E così via.
Ciò dà ai gestori dei call center un’idea di quante chiamate potrebbero ricevere all’ora e consente loro di gestire gli orari dei dipendenti in base al numero di chiamate previste.
Esempio 2: Numero di arrivi in un ristorante
I ristoranti utilizzano la distribuzione di Poisson per modellare il numero previsto di clienti che arriveranno al ristorante ogni giorno.
Ad esempio, supponiamo che un determinato ristorante riceva una media di 100 clienti al giorno. Possiamo utilizzare il calcolatore della distribuzione di Poisson per trovare la probabilità che il ristorante abbia più di un certo numero di clienti:
- P(X > 110 clienti) = 0,14714
- P(X > 120 clienti) = 0,02267
- P(X > 130 clienti) = 0,00171
E così via.
Ciò dà ai ristoratori un’idea della probabilità che ricevano più di un certo numero di clienti in un dato giorno.
Esempio 3: numero di visitatori del sito web all’ora
Le società di hosting di siti Web utilizzano la distribuzione di Poisson per modellare il numero previsto di visitatori orari che riceveranno i siti Web.
Ad esempio, supponiamo che un determinato sito Web riceva una media di 20 visitatori all’ora. Possiamo utilizzare il calcolatore della distribuzione di Poisson per trovare la probabilità che il sito web riceva più di un certo numero di visitatori in una determinata ora:
- P(X > 25 visitatori) = 0,11218
- P(X > 30 visitatori) = 0,01347
- P(X > 35 visitatori) = 0,00080
E così via.
Ciò dà alle società di hosting un’idea di quanta larghezza di banda fornire a diversi siti Web per garantire che saranno in grado di gestire un certo numero di visitatori ogni ora.
Esempio 4: Numero di fallimenti archiviati al mese
Le banche utilizzano la distribuzione di Poisson per modellare il numero di fallimenti previsti dei clienti al mese.
Ad esempio, supponiamo che una determinata banca abbia una media di 3 fallimenti dichiarati dai suoi clienti ogni mese. Possiamo utilizzare il calcolatore della distribuzione di Poisson per trovare la probabilità che la banca riceva un numero specifico di dichiarazioni di fallimento in un dato mese:
- P(X = 0 fallimenti) = 0,04979
- P(X = 1 fallimento) = 0,14936
- P(X = 2 fallimenti) = 0,22404
E così via.
Ciò dà alle banche un’idea di quanta riserva dovrebbero tenere nel caso in cui si verifichi un certo numero di fallimenti in un dato mese.
Esempio 5: numero di interruzioni di rete a settimana
Le aziende tecnologiche utilizzano la distribuzione di Poisson per modellare il numero di interruzioni di rete previste a settimana.
Ad esempio, supponiamo che una determinata azienda subisca in media un’interruzione della rete a settimana. Possiamo utilizzare il calcolatore della distribuzione di Poisson per determinare la probabilità che l’azienda subisca un certo numero di interruzioni di rete in una determinata settimana:
- P(X = 0 errore) = 0,36788
- P(X = 1 errore) = 0,36788
- P(X = 2 guasti) = 0,18394
E così via.
Ciò dà all’azienda un’idea di quante interruzioni potrebbero verificarsi ogni settimana.
Risorse addizionali
6 esempi concreti della distribuzione normale
5 esempi concreti della distribuzione binomiale
5 esempi concreti di distribuzione uniforme
4 esempi di utilizzo della regressione lineare nella vita reale
4 esempi di utilizzo di ANOVA nella vita reale