변동성 측정
이 문서에서는 변동성 측정이 무엇인지, 이러한 유형의 통계 측정이 어떤 용도로 사용되는지 설명합니다. 따라서 변동성 측도의 정의, 다양한 유형의 변동성 측도 및 변동성 측도 계산 방법을 확인할 수 있습니다.
변동성 측정이란 무엇입니까?
변동성 측정값은 데이터 세트의 변동성을 나타내는 통계적 측정값입니다. 즉, 변동성 측정은 데이터 시리즈의 분산을 측정합니다.
따라서 변동성 측정은 표본 내 값의 분산을 파악하는 데 사용됩니다. 변동성 측정 값이 높을수록 표본의 데이터가 서로 더 멀리 떨어져 있음을 의미합니다. 일반적으로 데이터 샘플이 서로 가까이 있는 것이 중요하므로 일반적으로 변동성 측정을 최소화하려고 노력합니다.
통계에서 변동성 측정은 데이터 세트에 대한 중앙 집중화 측정 의 대표성을 알 수 있기 때문에 중요합니다. 변동성 측정 값이 낮다면 데이터가 매우 집중되어 있다는 의미이므로 중앙 집중화 측정이 전체 데이터를 잘 설명합니다.
변동성 측정값은 분산 측정값 또는 확산 측정값 이라고도 합니다.
변동성의 척도는 무엇입니까?
변동성 측정은 다음과 같습니다.
- 표준편차(또는 표준편차)
- 변화
- 변동 계수
- 정돈하다
- 사분위수 범위
- 중간 차이
다음은 각 변동성 측정 유형을 계산하는 방법을 설명합니다.
표준 편차
표준 편차 는 일반 편차 라고도 하며 데이터 계열의 편차 제곱합을 총 관측치 수로 나눈 값의 제곱근과 같습니다.
따라서 이 변동성 측정 공식은 다음과 같습니다.

변화
분산 은 총 관측치 수에 대한 잔차 제곱의 합과 같습니다. 따라서 이 변동성 측정 기준의 공식은 다음과 같습니다.

금:
-

분산을 계산하려는 확률 변수입니다.
-

데이터 값입니다

.
-

총 관측치 수입니다.
-

확률변수의 평균이다

.
변동 계수
통계에서 변동 계수는 평균을 기준으로 데이터 세트의 분산을 결정하는 데 사용되는 변동성의 척도입니다. 변동계수는 데이터의 표준편차를 평균으로 나눈 후 100을 곱하여 백분율로 표시하는 방식으로 계산됩니다.
![]()
정돈하다
범위는 표본 데이터의 최대값과 최소값 간의 차이를 나타내는 변동성의 척도입니다. 따라서 모집단이나 통계 표본의 범위를 계산하려면 최소값에서 최대값을 빼야 합니다.
![]()
사분위수 범위
사분위간 범위 라고도 불리는 사분위간 범위 는 세 번째 사분위수와 첫 번째 사분위수 간의 차이를 나타내는 통계적 변동성의 척도입니다.
따라서 통계 데이터 세트의 사분위수 범위를 계산하려면 먼저 세 번째와 첫 번째 사분위수를 구한 다음 이를 빼야 합니다.
![]()
사분위수 범위에 대한 기호는 영어 사분위수 범위 에서 따온 IQR입니다.
이 변동성 측정의 가장 유리한 특성 중 하나는 강력한 통계, 즉 이상치에 대한 높은 견고성을 갖는다는 것입니다. 사분위수 범위 계산에서는 극단값이 고려되지 않기 때문에 새로운 이상치가 나타나더라도 그 값은 거의 변하지 않습니다.
중간 차이
평균 절대 편차 라고도 하는 평균 편차 는 절대 편차의 평균입니다. 따라서 평균 편차는 산술 평균과 각 데이터 항목의 편차의 합을 총 데이터 항목 수로 나눈 값과 같습니다.
![]()