ကိန်းဂဏန်းစာရင်းအင်းများတွင် အဘယ်ကြောင့် အရေးကြီးသနည်း။
စာရင်းဇယားများတွင်၊ အပိုင်းသည် ဒေတာအစုတစ်ခုရှိ အသေးငယ်ဆုံးနှင့် အကြီးဆုံးတန်ဖိုးအကြား ကွာခြားချက်ကို ကိုယ်စားပြုသည်။
ဥပမာအားဖြင့်၊ ကျွန်ုပ်တို့တွင် အောက်ပါဒေတာအစုံရှိသည်ဆိုပါစို့။
ဒေတာအတွဲ- 3၊ 4၊ 11၊ 15၊ 19၊ 19၊ 19၊ 22၊ 22၊ 23၊ 23၊ 26
အပိုင်းအခြားကို တွက်ချက်ရန် အောက်ပါဖော်မြူလာကို ကျွန်ုပ်တို့ အသုံးပြုနိုင်ပါသည်။
- အပိုင်းအခြား = အများဆုံးတန်ဖိုး – အနည်းဆုံးတန်ဖိုး
- အတိုင်းအတာ = 26 – 3
- အပိုင်း = ၂၃
အကွာအဝေးက ၂၃ ပါ။ ၎င်းသည် ဒေတာအတွဲရှိ အသေးငယ်ဆုံးနှင့် အကြီးဆုံးတန်ဖိုးများကြား ခြားနားချက်ကို ကိုယ်စားပြုသည်။
စာရင်းဇယားများတွင်၊ အပိုင်းအခြားသည် အောက်ပါအကြောင်းပြချက်များအတွက် အရေးကြီးသည်-
အကြောင်းပြချက် 1 : ၎င်းသည် ဒေတာအစုတစ်ခုလုံး၏ ဖြန့်ကျက်မှုကို ပြောပြသည်။
အကြောင်းပြချက် 2 : ပေးထားသောဒေတာအစုံတွင် လွန်ကဲတန်ဖိုးများ ဖြစ်နိုင်ချေကို ပြောပြသည်။
အောက်ဖော်ပြပါ ဥပမာများသည် လက်တွေ့တွင် ဤအကြောင်းရင်းတစ်ခုစီကို ဖော်ပြသည်။
အကြောင်းရင်း 1- Range သည် ဒေတာအစုတစ်ခုလုံး၏ ဖြန့်ကျက်မှုကို ပြောပြသည်။
အပိုင်းအခြားသည် ဒေတာအစုံတစ်ခုလုံး၏ ဖြန့်ဖြူးမှုကို ပြောပြသည်။
ဥပမာအားဖြင့်၊ ကျွန်ုပ်တို့တွင် အတန်းတစ်တန်းတွင် မတူညီသော ကျောင်းသား 20 ၏ စာမေးပွဲရမှတ်များကို ပြသသော အောက်ပါဒေတာအတွဲရှိသည်ဆိုပါစို့။
စာမေးပွဲရလဒ်များ၏ အပိုင်းအခြားကို အောက်ပါအတိုင်း တွက်ချက်မည်ဖြစ်သည်။
- အပိုင်းအခြား = အများဆုံးတန်ဖိုး – အနည်းဆုံးတန်ဖိုး
- အတိုင်းအတာ = ၉၈ မှ ၆၈
- အတိုင်းအတာ = 30
အကွာအဝေးသည် 30 ဖြစ်သွားသည်။ ၎င်းသည် စာမေးပွဲတွင် အမြင့်ဆုံးအဆင့်နှင့် အတန်းရှိ အနိမ့်ဆုံးအဆင့်ကြား ကွာခြားချက်ကို ကိုယ်စားပြုသည်။
ဤအတိုင်းအတာကို တိကျစွာသိရှိထားခြင်းဖြင့် အတန်းပိုင်ဆရာသည် စာမေးပွဲရလဒ်များတွင် တန်ဖိုးများခွဲဝေမှုကို ကျောင်းသားအားလုံးကြားတွင် လျင်မြန်စွာ နားလည်နိုင်သည်။
အကြောင်းရင်း 2- Range သည် ပေးထားသောဒေတာအစုံတွင် မည်သည့်အစွန်းရောက်တန်ဖိုးများ ဖြစ်နိုင်သည်ကို ပြောပြသည်။
အပိုင်းအခြားသည် ပေးထားသောဒေတာအစုံတွင် မည်သည့်အစွန်းရောက်တန်ဖိုးများ ဖြစ်နိုင်သည်ကို ပြောပြသည်။
ဥပမာအားဖြင့်၊ အိမ်ခြံမြေအေးဂျင့်တစ်ဦးသည် အမေရိကန်ပြည်ထောင်စုရှိ မြို့တစ်မြို့ရှိ အိမ် 100,000 အရောင်းစျေးနှုန်းများပါရှိသော ဒေတာဘေ့စ်သို့ ဝင်ရောက်ခွင့်ရှိသည်ဆိုပါစို့-
ဤဒေတာအစုံ၏အကွာအဝေးကိုတွက်ချက်ပြီး အောက်ပါတို့ကိုရှာရန် ကိန်းဂဏန်းဆော့ဖ်ဝဲ ( Excel ၊ R ၊ Python စသည်ဖြင့်) ကိုအသုံးပြုသည်ဆိုပါစို့။
- အပိုင်းအခြား = အမြင့်ဆုံးတန်ဖိုး – အနည်းဆုံးတန်ဖိုး
- အတိုင်းအတာ = 854,000 မှ 194,000
- အကွာအဝေး = 660,000
အိမ်ခြံမြေအေးဂျင့်တွင် $194,000 အောက် သို့မဟုတ် $854,000 ထက်နည်းသော ဝယ်ယူမှုဘတ်ဂျက်ရှိသော client ရှိပါက၊ အဆိုပါမြို့အတွင်းရှိအိမ်မည်သည့်အိမ်မှဝယ်ယူမှုစံနှုန်းများနှင့်ပြည့်မီမည်မဟုတ်ကြောင်းချက်ချင်းသိနိုင်သည်။
ကမ်းခြေကိုအသုံးပြုခြင်း၏နောက်ကွယ်
အကွာအဝေးသည် အားနည်းချက်တစ်ခုမှ ခံစားရသည်- ၎င်းကို ပြင်ပမှ လွှမ်းမိုးထားသည် ။
ယင်းကို သရုပ်ဖော်ရန်၊ အောက်ပါဒေတာအတွဲကို ထည့်သွင်းစဉ်းစားပါ။
ဒေတာအတွဲ- ၁၊ ၄၊ ၈၊ ၁၁၊ ၁၃၊ ၁၇၊ ၁၉၊ ၁၉၊ ၂၀၊ ၂၃၊ ၂၄၊ ၂၄၊ ၂၅၊ ၂၈၊ ၂၉၊ ၃၁၊ ၃၂
ဤဒေတာအတွဲ၏ အကွာအဝေးမှာ 32 – 1 = 31 ဖြစ်သည်။
သို့သော်၊ ဒေတာအတွဲတွင် လွန်ကဲသော သာလွန်ထူးခြားမှု ရှိ၊ မရှိ သုံးသပ်ပါ။
ဒေတာအတွဲ- ၁၊ ၄၊ ၈၊ ၁၁၊ ၁၃၊ ၁၇၊ ၁၉၊ ၁၉၊ ၂၀၊ ၂၃၊ ၂၄၊ ၂၄၊ ၂၅၊ ၂၈၊ ၂၉၊ ၃၁၊ ၃၂၊ ၃၇၈
ဤဒေတာအတွဲ၏အကွာအဝေးသည် ယခု ၃၇၈ – ၁ = ၃၇၇ ဖြစ်လိမ့်မည်။
အစွန်းထွက်တစ်ခုကြောင့် အပိုင်းအခြားသည် သိသိသာသာ ပြောင်းလဲသွားသည်ကို သတိပြုပါ။
ဒေတာအတွဲတစ်ခု၏ အကွာအဝေးကို တွက်ချက်ခြင်းမပြုမီ၊ အပိုင်းအခြားကို အထင်မှားစေမည့် အစွန်းအထင်းများ ရှိ၊ မရှိ စစ်ဆေးရန် သင့်တော်ပါသည်။
ထပ်လောင်းအရင်းအမြစ်များ
အောက်ဖော်ပြပါ သင်ခန်းစာများတွင် စာရင်းအင်းဆိုင်ရာ အစီအမံများ၏ အရေးပါပုံကို ရှင်းပြသည်-
ကိန်းဂဏန်းစာရင်းအင်းများတွင် ပျမ်းမျှသည် အဘယ်ကြောင့်အရေးကြီးသနည်း။
စာရင်းဇယားများတွင် ပျမ်းမျှသည် အဘယ်ကြောင့်အရေးကြီးသနည်း။
စာရင်းဇယားများတွင် မုဒ်သည် အဘယ်ကြောင့် အရေးကြီးသနည်း။
စာရင်းဇယားများတွင် စံသွေဖည်ခြင်းသည် အဘယ်ကြောင့် အရေးကြီးသနည်း။