Hoe het relatieve risico te interpreteren: met voorbeelden
In de statistieken verwijst het relatieve risico naar de waarschijnlijkheid dat een gebeurtenis zich voordoet in een behandelde groep, vergeleken met de waarschijnlijkheid dat een gebeurtenis zich voordoet in een controlegroep.
Het wordt als volgt berekend:
Relatief risico = (waarschijnlijkheid van gebeurtenis in behandelingsgroep) / (waarschijnlijkheid van gebeurtenis in controlegroep)
Over het algemeen ziet u hoe u de relatieve risicowaarden interpreteert:
- Relatief risico < 1 : het is minder waarschijnlijk dat de gebeurtenis optreedt in de behandelingsgroep
- Relatief risico = 1 : De gebeurtenis heeft in elke groep dezelfde waarschijnlijkheid
- Relatief risico > 1 : De kans is groter dat de gebeurtenis optreedt in de behandelingsgroep
De volgende voorbeelden laten zien hoe relatieve risicowaarden in de praktijk kunnen worden geïnterpreteerd.
Voorbeeld 1: Relatief risico < 1
Stel dat we willen weten of lichaamsbeweging invloed heeft op het risico op het ontwikkelen van een ziekte.
We verzamelen gegevens en constateren dat 28% van de mensen die regelmatig sporten deze ziekte ontwikkelen, terwijl 50% van de mensen die niet regelmatig sporten deze ziekte krijgen.
In dit scenario berekenen we het relatieve risico als volgt:
- Relatief risico = P (gebeurtenis in de behandelgroep) / P (gebeurtenis in de controlegroep)
- Relatief risico = P (ziekte met inspanning) / P (ziekte zonder inspanning)
- Relatief risico = 0,28 / 0,50
- Relatief risico = 0,56
Omdat het relatieve risico kleiner is dan 1, zegt dit ons dat het minder waarschijnlijk is dat deze ziekte zich ontwikkelt bij mensen die sporten.
Preciezer gezegd zouden we kunnen zeggen dat een individu 44% minder kans heeft (1 – 0,56 = 0,44) om deze ziekte te ontwikkelen als hij regelmatig beweegt.
Voorbeeld 2: Relatief risico = 1
Stel dat we willen weten of een nieuwe opleiding invloed heeft op het vermogen van studenten om voor een bepaald examen te slagen.
We verzamelen gegevens en constateren dat 40% van de studenten die het nieuwe curriculum gebruiken, slaagt voor het examen, terwijl 40% van de studenten die het nieuwe curriculum niet gebruiken ook slaagt voor het examen.
In dit scenario berekenen we het relatieve risico als volgt:
- Relatief risico = P (gebeurtenis in de behandelgroep) / P (gebeurtenis in de controlegroep)
- Relatief risico = P (succes met nieuw programma) / P (succes zonder nieuw programma)
- Relatief risico = 0,40 / 0,40
- Relatief risico = 1
Omdat het relatieve risico gelijk is aan 1, vertelt dit ons dat een individu dezelfde kans heeft om voor het examen te slagen, ongeacht of hij het nieuwe curriculum gebruikt of niet.
Voorbeeld 3: Relatief risico > 1
Stel dat we willen weten of roken invloed heeft op het risico op het ontwikkelen van longkanker.
We verzamelen gegevens en constateren dat 70% van de mensen die roken longkanker krijgen, terwijl 5% van de mensen die niet roken longkanker krijgen.
In dit scenario berekenen we het relatieve risico als volgt:
- Relatief risico = P (gebeurtenis in de behandelgroep) / P (gebeurtenis in de controlegroep)
- Relatief risico = P (longkanker met roken) / P (longkanker zonder roken)
- Relatief risico = 0,70 / 0,05
- Relatief risico = 14
Omdat het relatieve risico groter is dan 1, vertelt dit ons dat iemand een grotere kans heeft om longkanker te krijgen als hij rookt.
Preciezer gezegd zouden we kunnen zeggen dat iemand een veertien keer grotere kans heeft om longkanker te krijgen als hij of zij rookt.
Het interpreteren van het relatieve risico in een kruistabel
Vaak moet u het relatieve risico berekenen en interpreteren met behulp van een 2×2-tabel, die de volgende indeling heeft:
We kunnen de volgende formule gebruiken om het relatieve risico in een 2×2-tabel te berekenen:
Relatief risico = [A/(A+B)] / [C/(C+D)]
Stel bijvoorbeeld dat 50 basketbalspelers een nieuw trainingsprogramma gebruiken en 50 spelers een oud trainingsprogramma gebruiken. Aan het einde van het programma testen we elke speler om te zien of hij of zij slaagt voor een bepaalde vaardigheidstest.
De volgende 2×2-tabel toont de resultaten:
We berekenen het relatieve risico als volgt:
- Relatief risico = [A/(A+B)] / [C/(C+D)]
- Relatief risico = [34/(34+16)] / [39/(39+11)]
- Relatief risico = 0,68 / 0,78
- Relatief risico = 0,872
Omdat het relatieve risico kleiner is dan 1, duidt dit erop dat de kans op succes in het nieuwe programma kleiner is dan in het oude programma.
Preciezer gezegd zouden we kunnen zeggen dat de kans dat iemand de vaardigheidstest haalt 12,8% kleiner is (1 – 0,872 = 0,128) als hij of zij het nieuwe programma gebruikt.
Aanvullende bronnen
De volgende tutorials bieden aanvullende informatie over oddsratio’s en relatief risico:
Hoe oddsratio’s te interpreteren
Hoe u de oddsratio en het relatieve risico in Excel kunt berekenen