Tabela rozkładu normalnego

W tym artykule znajdziesz tablicę rozkładu normalnego, a dodatkowo kilka instrukcji, jak korzystać z tablicy rozkładu normalnego.

Wartości z tabeli rozkładu normalnego

Poniższa tabela przedstawia skumulowane wartości prawdopodobieństwa rozkładu normalnego (lewy ogon). Należy pamiętać, że wartości w tej tabeli odpowiadają standardowemu rozkładowi normalnemu, dlatego aby skorzystać z tabeli należy najpierw wprowadzić zmienną .

z 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359
0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5753
0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141
0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517
0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879
0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7224
0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549
0,7 0,7580 0,7611 0,7642 0,7673 0,7704 0,7734 0,7764 0,7794 0,7823 0,7852
0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8133
0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389
0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621
1.1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830
1.2 0,8849 0,8869 0,8888 0,8907 0,8925 0,8944 0,8962 0,8980 0,8997 0,9015
1.3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9177
1.4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319
1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441
1.6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545
1.7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633
1.8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706
1.9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767
0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
2.0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817
2.1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857
2.2 0,9861 0,9864 0,9868 0,9871 0,9875 0,9878 0,9881 0,9884 0,9887 0,9890
23 0,9893 0,9896 0,9898 0,9901 0,9904 0,9906 0,9909 0,9911 0,9913 0,9916
2.4 0,9918 0,9920 0,9922 0,9925 0,9927 0,9929 0,9931 0,9932 0,9934 0,9936
2.5 0,9938 0,9940 0,9941 0,9943 0,9945 0,9946 0,9948 0,9949 0,9951 0,9952
2.6 0,9953 0,9955 0,9956 0,9957 0,9959 0,9960 0,9961 0,9962 0,9963 0,9964
2.7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972 0,9973 0,9974
2.8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0,9979 0,9979 0,9980 0,9981
2.9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986
0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09
3 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990
3.1 0,9990 0,9991 0,9991 0,9991 0,9992 0,9992 0,9992 0,9992 0,9993 0,9993
3.2 0,9993 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9995 0,9995 0,9995
3.3 0,9995 0,9995 0,9995 0,9996 0,9996 0,9996 0,9996 0,9996 0,9996 0,9997
3.4 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9997 0,9998
3.5 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998
3.6 0,9998 0,9998 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999
3.7 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999
3.8 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999 0,9999
3.9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

Jak korzystać z tabeli rozkładu normalnego

Aby skorzystać z tabeli rozkładu normalnego, należy wykonać następujące kroki:

  1. Standaryzuj (lub typizuj) wartość rozkładu normalnego. Aby to zrobić, musimy odjąć wartość minus średnia rozkładu normalnego, a następnie podzielić przez odchylenie standardowe rozkładu normalnego.
  2. Do tabeli należy wejść poprzez wiersz odpowiadający części całkowitej i pierwszemu miejscu po przecinku wartości uzyskanej w poprzednim kroku.
  3. Do tabeli należy wprowadzać kolumnę drugiego miejsca po przecinku uzyskanej wartości.
  4. Skumulowana wartość prawdopodobieństwa to wartość znaleziona na styku wiersza i kolumny z poprzednich kroków.

Aby zobaczyć przykład użycia tabeli rozkładu normalnego, poniżej znajduje się skumulowane prawdopodobieństwo wartości mniejszej niż 33 w rozkładzie normalnym ze średnią 28 i odchyleniem standardowym 7.

N(28,7)\ \color{orange}\bm{\longrightarrow}\color{black}\ P[X\leq 33]= \ \color{orange}\bm{?}\color{black}

Aby skorzystać z tabeli rozkładu normalnego, musimy najpierw wykonać proces wpisywania, aby uzyskać standardowy rozkład normalny. Aby to zrobić, należy odjąć średnią od danej wartości, a następnie podzielić przez odchylenie standardowe rozkładu:

Z=\cfrac{X-\mu}{\sigma}

Odejmujemy więc średnią i dzielimy wartość prawdopodobieństwa przez odchylenie standardowe:

\displaystyle P[X\leq 33]=P\left[Z\leq\frac{33-28}{7}\right]=P[Z\leq 0,71]

Po standaryzacji zmiennej przechodzimy do standardowej tabeli prawdopodobieństwa rozkładu normalnego (patrz wyżej), aby sprawdzić, jakiemu prawdopodobieństwu odpowiada wartość 0,71:

\displaystyle P[Z\leq 0,71]=0,7611

Prawdopodobieństwo uzyskania wartości równej lub mniejszej od 0,71 wynosi zatem 76,11%.

Należy pamiętać, że jeśli wartość Z uzyskana w procesie jest ujemna, aby obliczyć jej prawdopodobieństwo, należy od prawdopodobieństwa odjąć dodatnią wartość Z. Spójrz na następujący przykład:

\begin{array}{l}P[Z\leq -1,58]=\\[2ex]=1-P[Z\leq 1,58]=\\[2ex]=1-0,9429=\\[2ex]=0,0571\end{array}

Dodaj komentarz

Twój adres e-mail nie zostanie opublikowany. Wymagane pola są oznaczone *