Jak interpretować ryzyko względne: z przykładami
W statystyce ryzyko względne odnosi się do prawdopodobieństwa wystąpienia zdarzenia w grupie leczonej w porównaniu z prawdopodobieństwem wystąpienia zdarzenia w grupie kontrolnej.
Oblicza się go w następujący sposób:
Ryzyko względne = (Prawdopodobieństwo zdarzenia w grupie leczonej) / (Prawdopodobieństwo zdarzenia w grupie kontrolnej)
Ogólnie rzecz biorąc, oto jak interpretować względne wartości ryzyka:
- Ryzyko względne < 1 : prawdopodobieństwo wystąpienia zdarzenia w grupie leczonej jest mniejsze
- Ryzyko względne = 1 : Zdarzenie ma takie samo prawdopodobieństwo wystąpienia w każdej grupie
- Ryzyko względne > 1 : wystąpienie zdarzenia jest bardziej prawdopodobne w grupie leczonej
Poniższe przykłady pokazują, jak w praktyce interpretować wartości ryzyka względnego.
Przykład 1: Ryzyko względne < 1
Załóżmy, że chcemy wiedzieć, czy wysiłek fizyczny wpływa na ryzyko zachorowania na chorobę.
Zbieramy dane i stwierdzamy, że choroba ta zapada na tę chorobę u 28% osób regularnie ćwiczących, natomiast u 50% osób, które nie ćwiczą regularnie.
W tym scenariuszu ryzyko względne obliczylibyśmy w następujący sposób:
- Ryzyko względne = P (zdarzenie w grupie leczonej) / P (zdarzenie w grupie kontrolnej)
- Ryzyko względne = P (choroba wywołana wysiłkiem fizycznym) / P (choroba spowodowana wysiłkiem fizycznym)
- Ryzyko względne = 0,28 / 0,50
- Ryzyko względne = 0,56
Ponieważ ryzyko względne jest mniejsze niż 1, oznacza to, że prawdopodobieństwo rozwoju tej choroby u osób ćwiczących jest mniejsze.
Mówiąc dokładniej, można powiedzieć, że ryzyko zachorowania na tę chorobę jest o 44% mniejsze (1 – 0,56 = 0,44), jeśli ktoś regularnie ćwiczy.
Przykład 2: Ryzyko względne = 1
Załóżmy, że chcemy wiedzieć, czy nowy kierunek studiów wpływa na zdolność uczniów do zdania określonego egzaminu.
Zbieramy dane i okazuje się, że 40% uczniów, którzy korzystają z nowej podstawy programowej, zdaje egzamin, a 40% uczniów, którzy nie korzystają z nowej podstawy programowej, również zdaje egzamin.
W tym scenariuszu ryzyko względne obliczylibyśmy w następujący sposób:
- Ryzyko względne = P (zdarzenie w grupie leczonej) / P (zdarzenie w grupie kontrolnej)
- Ryzyko względne = P (sukces z nowym programem) / P (sukces bez nowego programu)
- Ryzyko względne = 0,40 / 0,40
- Ryzyko względne = 1
Ponieważ ryzyko względne wynosi 1, oznacza to, że dana osoba ma takie samo prawdopodobieństwo zdania egzaminu, niezależnie od tego, czy korzysta z nowego programu nauczania, czy nie.
Przykład 3: Ryzyko względne > 1
Załóżmy, że chcemy wiedzieć, czy palenie wpływa na ryzyko zachorowania na raka płuc.
Zbieramy dane i stwierdzamy, że u 70% osób, które palą, zapada na raka płuc, a u 5% osób, które nie palą – na raka płuc.
W tym scenariuszu ryzyko względne obliczylibyśmy w następujący sposób:
- Ryzyko względne = P (zdarzenie w grupie leczonej) / P (zdarzenie w grupie kontrolnej)
- Ryzyko względne = P (rak płuc przy paleniu) / P (rak płuc bez palenia)
- Ryzyko względne = 0,70 / 0,05
- Ryzyko względne = 14
Ponieważ ryzyko względne jest większe niż 1, oznacza to, że palenie tytoniu jest bardziej narażone na ryzyko zachorowania na raka płuc.
Mówiąc dokładniej, moglibyśmy powiedzieć, że jeśli palisz, ryzyko zachorowania na raka płuc jest 14 razy większe.
Interpretacja ryzyka względnego w tabeli kontyngencji
Często konieczne może być obliczenie i zinterpretowanie ryzyka względnego przy użyciu tabeli 2×2, która ma następujący format:
Możemy użyć następującego wzoru do obliczenia ryzyka względnego w tabeli 2×2:
Ryzyko względne = [A/(A+B)] / [C/(C+D)]
Załóżmy na przykład, że 50 koszykarzy korzysta z nowego programu treningowego, a 50 zawodników korzysta ze starego programu treningowego. Na koniec programu testujemy każdego gracza, aby sprawdzić, czy zdał określony test umiejętności.
Poniższa tabela 2×2 przedstawia wyniki:
Ryzyko względne obliczylibyśmy w następujący sposób:
- Ryzyko względne = [A/(A+B)] / [C/(C+D)]
- Ryzyko względne = [34/(34+16)] / [39/(39+11)]
- Ryzyko względne = 0,68 / 0,78
- Ryzyko względne = 0,872
Ponieważ ryzyko względne jest mniejsze niż 1, oznacza to, że prawdopodobieństwo sukcesu w nowym programie jest mniejsze niż w starym programie.
Mówiąc dokładniej, można powiedzieć, że prawdopodobieństwo zdania testu umiejętności przez osobę korzystającą z nowego programu jest o 12,8% mniejsze (1 – 0,872 = 0,128).
Dodatkowe zasoby
Poniższe samouczki oferują dodatkowe informacje na temat ilorazów szans i ryzyka względnego:
Jak interpretować iloraz szans
Jak obliczyć iloraz szans i ryzyko względne w programie Excel