Jak znaleźć współczynnik determinacji (r-kwadrat) w r
Współczynnik determinacji (powszechnie oznaczany jako R 2 ) to proporcja wariancji zmiennej odpowiedzi , którą można wyjaśnić za pomocą zmiennych objaśniających w modelu regresji.
W tym samouczku przedstawiono przykład znajdowania i interpretowania R2 w modelu regresji w języku R.
Powiązane: Jaka jest dobra wartość R-kwadrat?
Przykład: znalezienie i interpretacja kwadratu R w R
Załóżmy, że mamy następujący zbiór danych zawierający dane dotyczące liczby godzin nauki, zdanych egzaminów przygotowawczych i uzyskanych wyników egzaminów dla 15 uczniów:
#create data frame df <- data.frame(hours=c(1, 2, 2, 4, 2, 1, 5, 4, 2, 4, 4, 3, 6, 5, 3), prep_exams=c(1, 3, 3, 5, 2, 2, 1, 1, 0, 3, 4, 3, 2, 4, 4), score=c(76, 78, 85, 88, 72, 69, 94, 94, 88, 92, 90, 75, 96, 90, 82)) #view first six rows of data frame head(df) hours prep_exams score 1 1 1 76 2 2 3 78 3 2 3 85 4 4 5 88 5 2 2 72 6 1 2 69
Poniższy kod pokazuje, jak dopasować model regresji liniowej do tego zbioru danych i wyświetlić wyniki modelu w języku R:
#fit regression model model <- lm(score~hours+prep_exams, data=df) #view model summary summary(model) Call: lm(formula = score ~ hours + prep_exams, data = df) Residuals: Min 1Q Median 3Q Max -7.9896 -2.5514 0.3079 3.3370 7.0352 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 71.8078 3.5222 20.387 1.12e-10 *** hours 5.0247 0.8964 5.606 0.000115 *** prep_exams -1.2975 0.9689 -1.339 0.205339 --- Significant. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.944 on 12 degrees of freedom Multiple R-squared: 0.7237, Adjusted R-squared: 0.6776 F-statistic: 15.71 on 2 and 12 DF, p-value: 0.0004454
R-kwadrat modelu (pokazany na samym dole wyniku) okazuje się wynosić 0,7237 .
Oznacza to, że 72,37% różnic w wynikach egzaminów można wytłumaczyć liczbą przepracowanych godzin i liczbą zdanych egzaminów praktycznych.
Należy pamiętać, że dostęp do tej wartości można również uzyskać, korzystając z następującej składni:
summary(model)$r.squared [1] 0.7236545
Jak interpretować wartość R-kwadrat
Wartość R do kwadratu zawsze będzie wynosić od 0 do 1.
Wartość 1 oznacza, że zmienne objaśniające mogą doskonale wyjaśniać wariancję zmiennej odpowiedzi, a wartość 0 oznacza, że zmienne objaśniające nie mają możliwości wyjaśnienia wariancji zmiennej odpowiedzi.
Ogólnie rzecz biorąc, im większa wartość R-kwadrat modelu regresji, tym lepiej zmienne objaśniające są w stanie przewidzieć wartość zmiennej odpowiedzi.
Sprawdź ten artykuł , aby uzyskać więcej informacji na temat ustalania, czy dana wartość R-kwadrat jest uważana za „dobrą” dla danego modelu regresji.
Powiązane: Jak obliczyć skorygowany R-kwadrat w R