Como calcular um intervalo de confiança binomial em r
Um intervalo de confiança para uma probabilidade binomial é calculado usando a seguinte fórmula:
Intervalo de confiança = p +/- z*(√ p(1-p) / n )
Ouro:
- p: proporção de “sucessos”
- z: o valor z escolhido
- n: tamanho da amostra
O valor z usado depende do nível de confiança escolhido. A tabela a seguir mostra o valor z que corresponde às opções de nível de confiança mais comuns:
Um nível de confiança | valor z |
---|---|
0,90 | 1.645 |
0,95 | 1,96 |
0,99 | 2,58 |
Por exemplo, suponha que queiramos estimar a proporção de residentes num condado que são a favor de uma determinada lei. Selecionamos uma amostra aleatória de 100 moradores e descobrimos que 56 deles são a favor da lei.
Este tutorial explica três maneiras diferentes de calcular um intervalo de confiança para a verdadeira proporção de residentes em todo o condado que apoiam a lei.
Método 1: use a função prop.test()
Uma maneira de calcular o intervalo de confiança binomial de 95% é usar a função prop.test() na base R:
#calculate 95% confidence interval prop. test (x=56, n=100, conf. level =.95, correct= FALSE ) 1-sample proportions test without continuity correction data: 56 out of 100, null probability 0.5 X-squared = 1.44, df = 1, p-value = 0.2301 alternative hypothesis: true p is not equal to 0.5 95 percent confidence interval: 0.4622810 0.6532797 sample estimates: p 0.56
O IC de 95% para a verdadeira proporção de residentes do condado que apoiam a lei é [0,46228, 0,65328] .
Método 2: use a função binconf()
Outra forma de calcular o intervalo de confiança é usar a função binconf() do pacote Hmisc :
library (Hmisc)
#calculate 95% confidence interval
binconf(x=56, n=100, alpha=.05)
PointEast Lower Upper
0.56 0.462281 0.6532797
Note que este intervalo de confiança corresponde ao calculado no exemplo anterior.
Método 3: calcular manualmente o intervalo de confiança
Outra forma de calcular o intervalo de confiança binomial de 95% em R é fazê-lo manualmente:
#define proportion p <- 56/100 #define significance level a <- .05 #calculate 95% confidence interval p + c(- qnorm (1-a/2), qnorm (1-a/2))* sqrt ((1/100)*p*(1-p)) [1] 0.4627099 0.6572901
Saiba mais sobre a função qnorm() aqui: Um guia para dnorm, pnorm, qnorm e rnorm em R
Recursos adicionais
Como realizar um teste binomial em R
Como traçar uma distribuição binomial em R