Como usar o método dos mínimos quadrados em r


O método dos mínimos quadrados é um método que podemos usar para encontrar a linha de regressão que melhor se ajusta a um determinado conjunto de dados.

Para usar o método dos mínimos quadrados para ajustar uma linha de regressão em R, podemos usar a função lm() .

Esta função usa a seguinte sintaxe básica:

 model <- lm(response ~ predictor, data=df)

O exemplo a seguir mostra como usar esta função em R.

Exemplo: método dos mínimos quadrados em R

Suponha que temos o seguinte quadro de dados em R que mostra o número de horas estudadas e a nota do exame correspondente para 15 alunos em uma turma:

 #create data frame
df <- data. frame (hours=c(1, 2, 4, 5, 5, 6, 6, 7, 8, 10, 11, 11, 12, 12, 14),
                 score=c(64, 66, 76, 73, 74, 81, 83, 82, 80, 88, 84, 82, 91, 93, 89))

#view first six rows of data frame
head(df)

  hours score
1 1 64
2 2 66
3 4 76
4 5 73
5 5 74
6 6 81

Podemos usar a função lm() para usar o método dos mínimos quadrados para ajustar uma linha de regressão a estes dados:

 #use method of least squares to fit regression line
model <- lm(score ~ hours, data=df)

#view regression model summary
summary(model)

Call:
lm(formula = score ~ hours, data = df)

Residuals:
   Min 1Q Median 3Q Max 
-5,140 -3,219 -1,193 2,816 5,772 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 65,334 2,106 31,023 1.41e-13 ***
hours 1.982 0.248 7.995 2.25e-06 ***
---
Significant. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.641 on 13 degrees of freedom
Multiple R-squared: 0.831, Adjusted R-squared: 0.818 
F-statistic: 63.91 on 1 and 13 DF, p-value: 2.253e-06

A partir dos valores da coluna Resultado Estimado , podemos escrever a seguinte linha de regressão ajustada:

Nota do exame = 65,334 + 1,982 (horas)

Veja como interpretar cada coeficiente no modelo:

  • Interceptação : Para um aluno que estuda 0 horas, a nota esperada do exame é 65,334 .
  • horas : Para cada hora adicional estudada, a nota esperada do exame aumenta em 1.982 .

Podemos usar essa equação para estimar a nota do exame que um aluno receberá com base nas horas estudadas.

Por exemplo, se um aluno estudar 5 horas, estimaríamos que sua nota no exame seria 75,244:

Nota do exame = 65,334 + 1,982(5) = 75,244

Finalmente, podemos criar um gráfico de dispersão dos dados originais com a linha de regressão ajustada sobreposta ao gráfico:

 #create scatter plot of data
plot(df$hours, df$score, pch=16, col=' steelblue ')

#add fitted regression line to scatter plot
abline(model)

Os círculos azuis representam os dados e a linha preta representa a linha de regressão ajustada.

Recursos adicionais

Os tutoriais a seguir explicam como realizar outras tarefas comuns em R:

Como criar um gráfico residual em R
Como testar a multicolinearidade em R
Como realizar ajuste de curva em R

Add a Comment

O seu endereço de email não será publicado. Campos obrigatórios marcados com *