População significa
Este artigo explica o que população significa nas estatísticas. Da mesma forma, você descobrirá qual é a fórmula da média populacional, como é calculado o intervalo de confiança da média populacional e, além disso, qual a diferença entre a média populacional e a média da amostra.
Qual é a média da população?
A média da população é a média aritmética de todos os elementos da população estatística. Portanto, para calcular a média populacional, todos os valores populacionais devem ser somados e depois divididos pelo número total de elementos da população.
O símbolo da média populacional é a letra grega μ.
Da mesma forma, a média populacional também pode ser definida como o valor esperado da variável que representa uma população.
Como calcular a média populacional
Depois de vermos a definição de média populacional, vamos ver como a média populacional é calculada para entender melhor seu significado.
Se todos os valores da população estatística forem conhecidos, a fórmula da média aritmética deve ser simplesmente aplicada para calcular a média populacional. Portanto, neste caso, para calcular a média populacional, precisamos somar todos os valores populacionais e depois dividir pelo número total de dados.
Assim, se conhecermos o valor de todos os elementos da população, a fórmula para calcular a média populacional é a seguinte:
Porém, em geral nem todos os valores populacionais são conhecidos, então normalmente o valor da média populacional é estimado por intervalos .
Intervalo de confiança para média populacional
Na prática, é impossível estudar todos os indivíduos de uma população, por isso normalmente escolhe-se uma amostra aleatória da população e, com base nos seus valores, faz-se uma aproximação do valor da média populacional. Mais precisamente, calculamos um intervalo no qual é muito provável que se encontre a média de toda a população; esse intervalo é chamado de intervalo de confiança para a média populacional.
O intervalo de confiança para a média populacional é calculado somando e subtraindo da média amostral o valor de Z α/2 multiplicado pelo desvio padrão (σ) e dividido pela raiz quadrada da altura da amostra (n). Portanto, a fórmula para cálculo do intervalo de confiança para a média populacional é:
A fórmula acima é usada quando a variância populacional é conhecida. Porém, se a variância populacional for desconhecida, que é o caso mais comum, o intervalo de confiança para a média é calculado utilizando a seguinte fórmula:
Ouro:
-
é a média amostral.
-
é o valor da distribuição t de Student de n-1 graus de liberdade com probabilidade α/2. Para amostras grandes e nível de confiança de 95% é geralmente próximo de 1,96 e para nível de confiança de 99% é geralmente próximo de 2,576.
-
é o desvio padrão da amostra.
-
é o tamanho da amostra.
Média populacional e média amostral
Finalmente, em resumo, revisaremos as diferenças entre a média populacional e a média amostral para que esses dois conceitos estatísticos fiquem claros.
A diferença entre a média populacional e a média amostral é o intervalo de valores sobre o qual a média é calculada. A média da população é a média de toda a população estatística, enquanto a média da amostra é a média de uma amostra da população.
Além disso, para diferenciar a média populacional da média amostral, elas são representadas por símbolos diferentes. O símbolo para a população significa é
, por outro lado, o símbolo para as médias amostrais é
.
Se ainda tiver dúvidas sobre as diferenças entre estes dois tipos de médias ou quiser saber mais sobre como calcular a média amostral, pode consultar o seguinte artigo: