Tipos de distribuições de probabilidade
Este artigo explica os diferentes tipos de distribuições de probabilidade nas estatísticas. Assim você descobrirá quantos tipos de distribuições de probabilidade existem e quais são as diferenças entre elas.
Quais são os tipos de distribuições de probabilidade?
Os tipos de distribuições de probabilidade são:
- Distribuições de probabilidade discretas :
- Distribuição uniforme discreta .
- Distribuição de Bernoulli .
- Distribuição binomial .
- Distribuição de peixes .
- Distribuição multinomial .
- Distribuição geométrica .
- Distribuição binomial negativa .
- Distribuição hipergeométrica .
- Distribuições de probabilidade contínuas :
- Distribuição uniforme e contínua .
- Distribuição normal .
- Distribuição lognormal .
- Distribuição qui-quadrado .
- Distribuição t de Student .
- Distribuição Snedecor F.
- Distribuição exponencial .
- Distribuição beta .
- Distribuição gama .
- Distribuição Weibull .
- Distribuição de Pareto .
Cada tipo de distribuição de probabilidade é explicado em detalhes abaixo.
Distribuições de probabilidade discretas
Uma distribuição de probabilidade discreta é a distribuição que define as probabilidades de uma variável aleatória discreta. Portanto, uma distribuição de probabilidade discreta só pode assumir um número finito de valores (geralmente valores inteiros).
Distribuição uniforme discreta
Distribuição uniforme discreta é uma distribuição de probabilidade discreta em que todos os valores são equiprováveis, ou seja, em uma distribuição uniforme discreta, todos os valores têm a mesma probabilidade de ocorrer.
Por exemplo, o lançamento de um dado pode ser definido com uma distribuição discreta e uniforme, uma vez que todos os resultados possíveis (1, 2, 3, 4, 5 ou 6) têm a mesma probabilidade de ocorrência.
Em geral, uma distribuição discreta uniforme possui dois parâmetros característicos, a e b , que definem a faixa de valores possíveis que a distribuição pode assumir. Assim, quando uma variável é definida por uma distribuição uniforme discreta, ela é escrita Uniform(a,b) .
A distribuição uniforme discreta pode ser usada para descrever experimentos aleatórios, porque se todos os resultados tiverem a mesma probabilidade, significa que há aleatoriedade no experimento.
Distribuição Bernoulli
A distribuição de Bernoulli , também conhecida como distribuição dicotômica , é uma distribuição de probabilidade que representa uma variável discreta que só pode ter dois resultados: “sucesso” ou “fracasso”.
Na distribuição de Bernoulli, “sucesso” é o resultado que esperamos e tem o valor 1, enquanto o resultado de “fracasso” é um resultado diferente do esperado e tem o valor 0. Portanto, se a probabilidade do resultado de “ sucesso” é p , a probabilidade do resultado de “fracasso” é q=1-p .
A distribuição de Bernoulli recebeu o nome do estatístico suíço Jacob Bernoulli.
Em estatística, a distribuição de Bernoulli tem principalmente uma aplicação: definir as probabilidades de experiências nas quais existem apenas dois resultados possíveis: sucesso e fracasso. Portanto, um experimento que usa a distribuição de Bernoulli é chamado de teste de Bernoulli ou experimento de Bernoulli.
Distribuição binomial
A distribuição binomial , também chamada de distribuição binomial , é uma distribuição de probabilidade que conta o número de sucessos ao realizar uma série de experimentos independentes e dicotômicos com probabilidade constante de sucesso. Em outras palavras, a distribuição binomial é uma distribuição que descreve o número de resultados bem-sucedidos de uma sequência de tentativas de Bernoulli.
Por exemplo, o número de vezes que uma moeda dá cara 25 vezes é uma distribuição binomial.
Em geral, o número total de experimentos realizados é definido pelo parâmetro n , enquanto p é a probabilidade de sucesso de cada experimento. Assim, uma variável aleatória que segue uma distribuição binomial é escrita da seguinte forma:
Observe que em uma distribuição binomial, exatamente o mesmo experimento é repetido n vezes e os experimentos são independentes um do outro, portanto a probabilidade de sucesso de cada experimento é a mesma (p) .
Distribuição de peixes
A distribuição de Poisson é uma distribuição de probabilidade que define a probabilidade de um certo número de eventos ocorrerem dentro de um período de tempo. Em outras palavras, a distribuição de Poisson é usada para modelar variáveis aleatórias que descrevem o número de vezes que um fenômeno se repete em um intervalo de tempo.
Por exemplo, o número de chamadas recebidas por minuto por uma central telefônica é uma variável aleatória discreta que pode ser definida usando a distribuição de Poisson.
A distribuição de Poisson possui um parâmetro característico, representado pela letra grega λ e indica o número de vezes que se espera que o evento estudado ocorra durante um determinado intervalo.
distribuição multinomial
A distribuição multinomial (ou distribuição multinomial ) é uma distribuição de probabilidade que descreve a probabilidade de múltiplos eventos exclusivos ocorrerem um determinado número de vezes após a realização de múltiplas tentativas.
Ou seja, se um experimento aleatório pode resultar em três ou mais eventos exclusivos e a probabilidade de cada evento ocorrer separadamente é conhecida, a distribuição multinomial é utilizada para calcular a probabilidade de que, ao realizar múltiplos experimentos, ocorra um determinado número de eventos. vezes cada evento.
A distribuição multinomial é, portanto, uma generalização da distribuição binomial.
distribuição geométrica
A distribuição geométrica é uma distribuição de probabilidade que define o número de tentativas de Bernoulli necessárias para obter o primeiro resultado bem-sucedido. Ou seja, uma distribuição geométrica modela processos nos quais os experimentos de Bernoulli são repetidos até que um deles obtenha resultado positivo.
Por exemplo, o número de carros que passam em uma rodovia até verem um carro amarelo é uma distribuição geométrica.
Lembre-se de que um teste de Bernoulli é um experimento que tem dois resultados possíveis: “sucesso” e “fracasso”. Portanto, se a probabilidade de “sucesso” for p , a probabilidade de “fracasso” é q=1-p .
Portanto, a distribuição geométrica depende do parâmetro p , que é a probabilidade de sucesso de todos os experimentos realizados. Além disso, a probabilidade p é a mesma para todos os experimentos.
distribuição binomial negativa
A distribuição binomial negativa é uma distribuição de probabilidade que descreve o número de tentativas de Bernoulli necessárias para obter um determinado número de resultados positivos.
Portanto, uma distribuição binomial negativa tem dois parâmetros característicos: r é o número desejado de resultados bem-sucedidos e p é a probabilidade de sucesso para cada experimento de Bernoulli realizado.
Assim, uma distribuição binomial negativa define um processo no qual são realizadas quantas tentativas de Bernoulli forem necessárias para obter resultados positivos. Além disso, todos estes ensaios de Bernoulli são independentes e têm uma probabilidade constante de sucesso .
Por exemplo, uma variável aleatória que segue uma distribuição binomial negativa é o número de vezes que um dado deve ser lançado até que o número 6 seja três vezes.
distribuição hipergeométrica
A distribuição hipergeométrica é uma distribuição de probabilidade que descreve o número de casos de sucesso em uma extração aleatória sem substituição de n elementos de uma população.
Ou seja, a distribuição hipergeométrica é utilizada para calcular a probabilidade de obter x sucessos ao extrair n elementos de uma população sem substituir nenhum deles.
Portanto, a distribuição hipergeométrica possui três parâmetros:
- N : é o número de elementos da população (N = 0, 1, 2,…).
- K : é o número máximo de casos de sucesso (K = 0, 1, 2,…,N). Como em uma distribuição hipergeométrica um elemento só pode ser considerado um “sucesso” ou um “fracasso”, NK é o número máximo de casos de falha.
- n : é o número de buscas sem substituição executadas.
Distribuições de probabilidade contínuas
Uma distribuição de probabilidade contínua é aquela que pode assumir qualquer valor em um intervalo, incluindo valores decimais. Portanto, uma distribuição de probabilidade contínua define as probabilidades de uma variável aleatória contínua.
distribuição uniforme e contínua
A distribuição uniforme contínua , também chamada de distribuição retangular , é um tipo de distribuição de probabilidade contínua em que todos os valores têm a mesma probabilidade de ocorrer. Em outras palavras, a distribuição uniforme contínua é uma distribuição em que a probabilidade é distribuída uniformemente ao longo de um intervalo.
A distribuição uniforme contínua é usada para descrever variáveis contínuas que têm probabilidade constante. Da mesma forma, a distribuição uniforme contínua é usada para definir processos aleatórios, porque se todos os resultados tiverem a mesma probabilidade, significa que há aleatoriedade no resultado.
A distribuição uniforme contínua possui dois parâmetros característicos, aeb , que definem o intervalo de equiprobabilidade. Assim, o símbolo para a distribuição uniforme contínua é U(a,b) , onde a e b são os valores característicos da distribuição.
Por exemplo, se o resultado de um experimento aleatório pode assumir qualquer valor entre 5 e 9 e todos os resultados possíveis têm a mesma probabilidade de ocorrer, o experimento pode ser simulado com uma distribuição uniforme contínua U(5.9).
Distribuição normal
A distribuição normal é uma distribuição de probabilidade contínua cujo gráfico tem forma de sino e é simétrico em relação à sua média. Nas estatísticas, a distribuição normal é utilizada para modelar fenômenos com características muito diferentes, por isso essa distribuição é tão importante.
De facto, em estatística, a distribuição normal é considerada de longe a distribuição mais importante de todas as distribuições de probabilidade, porque permite não só modelar um grande número de fenómenos reais, mas também utilizar a distribuição normal para aproximar outros tipos de distribuições. sob certas condições.
O símbolo da distribuição normal é a letra N maiúscula. Assim, para indicar que uma variável segue uma distribuição normal, ela é indicada pela letra N e os valores de sua média aritmética e desvio padrão são somados entre parênteses.
A distribuição normal tem muitos nomes diferentes, incluindo distribuição Gaussiana , distribuição Gaussiana e distribuição Laplace-Gauss .
Distribuição lognormal
A distribuição lognormal , ou distribuição lognormal , é uma distribuição de probabilidade que define uma variável aleatória cujo logaritmo segue uma distribuição normal.
Portanto, se a variável X tem distribuição normal, então a função exponencial e x tem distribuição lognormal.
Observe que a distribuição lognormal só pode ser usada quando os valores das variáveis são positivos, pois o logaritmo é uma função que leva apenas um argumento positivo.
Entre as diferentes aplicações da distribuição lognormal em estatística, destacamos a utilização desta distribuição para analisar investimentos financeiros e realizar análises de confiabilidade.
A distribuição lognormal também é conhecida como distribuição Tinaut , às vezes também escrita como distribuição lognormal ou distribuição log-normal .
Distribuição qui-quadrado
A distribuição Qui-quadrado é uma distribuição de probabilidade cujo símbolo é χ². Mais precisamente, a distribuição qui-quadrado é a soma do quadrado de k variáveis aleatórias independentes com distribuição normal.
Assim, a distribuição Qui-quadrado possui k graus de liberdade. Portanto, uma distribuição Qui-quadrado tem tantos graus de liberdade quanto a soma dos quadrados das variáveis normalmente distribuídas que ela representa.
A distribuição qui-quadrado também é conhecida como distribuição de Pearson .
A distribuição qui-quadrado é amplamente utilizada em inferência estatística, por exemplo, em testes de hipóteses e intervalos de confiança. Veremos a seguir quais são as aplicações desse tipo de distribuição de probabilidade.
Distribuição t de estudante
A distribuição t de Student é uma distribuição de probabilidade amplamente utilizada em estatística. Especificamente, a distribuição t de Student é utilizada no teste t de Student para determinar a diferença entre as médias de duas amostras e estabelecer intervalos de confiança.
A distribuição t de Student foi desenvolvida pelo estatístico William Sealy Gosset em 1908 sob o pseudônimo de “Student”.
A distribuição t de Student é definida pelo seu número de graus de liberdade, obtido subtraindo uma unidade do número total de observações. Portanto, a fórmula para determinar os graus de liberdade de uma distribuição t de Student é ν=n-1 .
Snedecor F Distribuição
A distribuição F de Snedecor , também chamada de distribuição F de Fisher-Snedecor ou simplesmente distribuição F , é uma distribuição de probabilidade contínua usada em inferência estatística, particularmente em análise de variância.
Uma das propriedades da distribuição Snedecor F é que ela é definida pelo valor de dois parâmetros reais, m e n , que indicam seus graus de liberdade. Assim, o símbolo para a distribuição Snedecor F é F m,n , onde m e n são os parâmetros que definem a distribuição.
A distribuição Fisher-Snedecor F deve seu nome ao estatístico inglês Ronald Fisher e ao estatístico americano George Snedecor.
Em estatística, a distribuição Fisher-Snedecor F tem diferentes aplicações. Por exemplo, a distribuição Fisher-Snedecor F é usada para comparar diferentes modelos de regressão linear, e esta distribuição de probabilidade é usada na análise de variância (ANOVA).
Distribuição exponencial
A distribuição exponencial é uma distribuição de probabilidade contínua usada para modelar o tempo de espera para a ocorrência de um fenômeno aleatório.
Mais precisamente, a distribuição exponencial permite descrever o tempo de espera entre dois eventos que segue uma distribuição de Poisson. Portanto, a distribuição exponencial está intimamente relacionada com a distribuição de Poisson.
A distribuição exponencial possui um parâmetro característico, representado pela letra grega λ e indica o número de vezes que se espera que o evento estudado ocorra durante um determinado período de tempo.
Da mesma forma, a distribuição exponencial também é usada para modelar o tempo até que ocorra uma falha. A distribuição exponencial, portanto, tem diversas aplicações na teoria da confiabilidade e da sobrevivência.
Distribuição Beta
A distribuição beta é uma distribuição de probabilidade definida no intervalo (0,1) e parametrizada por dois parâmetros positivos: α e β. Em outras palavras, os valores da distribuição beta dependem dos parâmetros α e β.
Portanto, a distribuição beta é utilizada para definir variáveis aleatórias contínuas cujo valor varia de 0 a 1.
Existem diversas notações para indicar que uma variável aleatória contínua é governada por uma distribuição beta, as mais comuns são:
Nas estatísticas, a distribuição beta tem aplicações muito variadas. Por exemplo, a distribuição beta é usada para estudar alterações percentuais em diferentes amostras. Da mesma forma, no gerenciamento de projetos, a distribuição beta é usada para realizar análises Pert.
Distribuição gama
A distribuição gama é uma distribuição de probabilidade contínua definida por dois parâmetros característicos, α e λ. Em outras palavras, a distribuição gama depende do valor de seus dois parâmetros: α é o parâmetro de forma e λ é o parâmetro de escala.
O símbolo da distribuição gama é a letra grega maiúscula Γ. Portanto, se uma variável aleatória segue uma distribuição gama, ela é escrita da seguinte forma:
A distribuição gama também pode ser parametrizada usando o parâmetro de forma k = α e o parâmetro de escala inversa θ = 1/λ. Em todos os casos, os dois parâmetros que definem a distribuição gama são números reais positivos.
Normalmente, a distribuição gama é usada para modelar conjuntos de dados distorcidos à direita, de modo que haja uma maior concentração de dados no lado esquerdo do gráfico. Por exemplo, a distribuição gama é usada para modelar a confiabilidade de componentes elétricos.
Distribuição Weibull
A distribuição Weibull é uma distribuição de probabilidade contínua definida por dois parâmetros característicos: o parâmetro de forma α e o parâmetro de escala λ.
Nas estatísticas, a distribuição Weibull é usada principalmente para análise de sobrevivência. Da mesma forma, a distribuição Weibull tem muitas aplicações em diferentes campos.
Segundo os autores, a distribuição Weibull também pode ser parametrizada com três parâmetros. Em seguida, é adicionado um terceiro parâmetro denominado valor limite, que indica a abcissa na qual o gráfico de distribuição começa.
A distribuição Weibull recebeu o nome do sueco Waloddi Weibull, que a descreveu detalhadamente em 1951. No entanto, a distribuição Weibull foi descoberta por Maurice Fréchet em 1927 e aplicada pela primeira vez por Rosin e Rammler em 1933.
Distribuição de Pareto
A distribuição de Pareto é uma distribuição de probabilidade contínua usada em estatística para modelar o princípio de Pareto. Portanto, a distribuição de Pareto é uma distribuição de probabilidade que possui alguns valores cuja probabilidade de ocorrência é muito maior que o restante dos valores.
Lembre-se que a lei de Pareto, também chamada de regra 80-20, é um princípio estatístico que diz que a maior parte da causa de um fenômeno se deve a uma pequena parte da população.
A distribuição de Pareto possui dois parâmetros característicos: o parâmetro de escala x m e o parâmetro de forma α.
Originalmente, a distribuição de Pareto era usada para descrever a distribuição da riqueza dentro da população, porque a maior parte dela se devia a uma pequena proporção da população. Mas actualmente a distribuição de Pareto tem muitas aplicações, por exemplo no controlo de qualidade, na economia, na ciência, no campo social, etc.