Как найти режим сгруппированных данных: с примерами
Часто нам нужно рассчитать, каким образом данные сгруппированы.
Помните, что режим представляет значение, которое появляется чаще всего.
Например, предположим, что у нас есть следующие сгруппированные данные:
Хотя рассчитать точный режим невозможно, поскольку мы не знаем исходных значений данных , его можно оценить, используя следующую формулу:
Режим сгруппированных данных = L + W[(F m – F 1 )/( (F m -F 1 ) + (F m – F 2 ) )]
Золото:
- L : Нижний предел модального класса.
- W : Ширина модального класса.
- F m : Частота модального класса
- F 1 : Частота прохождения курса непосредственно перед модальным курсом.
- F 2 : Частота курсов сразу после модального курса.
Примечание . Модальный класс — это просто класс с самой высокой частотой. В приведенном выше примере модальный класс будет 21–30, поскольку он имеет самую высокую частоту.
В следующих примерах показано, как рассчитать режим сгруппированных данных в различных сценариях.
Пример 1: Расчет режима сгруппированных данных
Предположим, у нас есть следующее распределение частот, показывающее, что экзамен оценили 40 учеников определенного класса:
В этом примере модальный класс — 71-80.
Зная это, мы можем рассчитать следующие значения:
- L : Нижний предел модального класса: 71.
- W : Ширина модального класса: 9.
- F m : Частота модального класса: 15
- F 1 : Частота прохождения курса непосредственно перед модальным курсом: 8.
- F 2 : Частота прохождения курса сразу после модального курса: 8
Мы можем подставить эти значения в формулу для расчета режима распределения:
- Режим = L + W[(F m – F 1 )/( (F m -F 1 ) + (F m – F 2 ) )]
- Режим = 71 + 9[(15-8) / ( (15-8) + (15-8) )]
- Режим = 75,5
Мы оцениваем балл модального экзамена в 75,5 .
Пример 2. Расчет режима сгруппированных данных
Предположим, у нас есть следующее частотное распределение, показывающее количество очков, набранных за игру 60 баскетболистами:
В этом примере модальный класс — 11-20.
Зная это, мы можем рассчитать следующие значения:
- L : Нижний предел модального класса: 11.
- W : Ширина модального класса: 9.
- F m : Частота модального класса: 25
- F 1 : Частота прохождения курса непосредственно перед модальным курсом: 8.
- F 2 : Частота курсов сразу после модального курса: 14.
Мы можем подставить эти значения в формулу для расчета режима распределения:
- Режим = L + W[(F m – F 1 )/( (F m -F 1 ) + (F m – F 2 ) )]
- Режим = 11 + 9[(25-8) / ( (25-8) + (25-14) )]
- Мода = 16,46
По нашим оценкам, количество набранных модальных баллов составляет 16,46 .
Дополнительные ресурсы
В следующих руководствах объясняется, как выполнять другие распространенные операции с сгруппированными данными:
Как найти среднее и стандартное отклонение сгруппированных данных
Как найти медиану сгруппированных данных
Как рассчитать процентильный рейтинг для сгруппированных данных