Как рассчитать sst, ssr и sse в r


Мы часто используем три разные суммы квадратов , чтобы измерить, насколько хорошо линия регрессии соответствует набору данных:

1. Сумма общих квадратов (SST) – сумма квадратов разностей между отдельными точками данных (y i ) и средним значением переменной ответа ( y ).

  • SST = Σ(y iy ) 2

2. Регрессия суммы квадратов (SSR) – сумма квадратов разностей между прогнозируемыми точками данных (ŷ i ) и средним значением переменной ответа ( y ).

  • ССР = Σ(ŷ iy ) 2

3. Ошибка суммы квадратов (SSE) – сумма квадратов разностей между прогнозируемыми точками данных (ŷ i ) и наблюдаемыми точками данных (y i ).

  • SSE = Σ(ŷ i – y i ) 2

В следующем пошаговом примере показано, как вычислить каждую из этих метрик для заданной регрессионной модели в R.

Шаг 1. Создайте данные

Во-первых, давайте создадим набор данных, содержащий количество учебных часов и результаты экзаменов, полученные 20 разными студентами данного колледжа:

 #create data frame
df <- data. frame (hours=c(1, 1, 1, 2, 2, 2, 2, 2, 3, 3,
                         3, 4, 4, 4, 5, 5, 6, 7, 7, 8),
                 score=c(68, 76, 74, 80, 76, 78, 81, 84, 86, 83,
                         88, 85, 89, 94, 93, 94, 96, 89, 92, 97))

#view first six rows of data frame
head(df)

  hours score
1 1 68
2 1 76
3 1 74
4 2 80
5 2 76
6 2 78

Шаг 2. Подберите регрессионную модель

Далее мы будем использовать функцию lm() , чтобы подогнать простую модель линейной регрессии, используя оценку в качестве переменной ответа и часы в качестве переменной-предиктора:

 #fit regression model
model <- lm(score ~ hours, data = df)

#view model summary
summary(model)

Call:
lm(formula = score ~ hours, data = df)

Residuals:
    Min 1Q Median 3Q Max 
-8.6970 -2.5156 -0.0737 3.1100 7.5495 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 73.4459 1.9147 38.360 < 2nd-16 ***
hours 3.2512 0.4603 7.063 1.38e-06 ***
---
Significant. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.289 on 18 degrees of freedom
Multiple R-squared: 0.7348, Adjusted R-squared: 0.7201 
F-statistic: 49.88 on 1 and 18 DF, p-value: 1.378e-06

Шаг 3. Рассчитайте SST, SSR и SSE.

Мы можем использовать следующий синтаксис для расчета SST, SSR и SSE:

 #find sse
sse <- sum (( fitted (model) - df$score)^2)
sse

[1] 331.0749

#find ssr
ssr <- sum (( fitted (model) - mean (df$score))^2)
ssr

[1] 917.4751

#find sst
sst <- ssr + sse
sst

[1] 1248.55

Метрики оказываются такими:

  • Общая сумма квадратов (SST): 1248,55
  • Регрессия суммы квадратов (SSR): 917,4751
  • Ошибка суммы квадратов (SSE): 331,0749.

Мы можем проверить, что SST = SSR + SSE:

  • ССТ = ССР + ССЕ
  • 1248,55 = 917,4751 + 331,0749

Мы также можем вручную рассчитать R-квадрат регрессионной модели:

  • R в квадрате = ССР/ССТ
  • R в квадрате = 917,4751/1248,55
  • R в квадрате = 0,7348

Это говорит нам о том, что 73,48% различий в результатах экзаменов можно объяснить количеством изученных часов.

Дополнительные ресурсы

Вы можете использовать следующие калькуляторы для автоматического расчета SST, SSR и SSE для любой простой линии линейной регрессии:

Калькулятор ССТ
RSS-калькулятор
Калькулятор ЕСС

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *