Кубічний середній

У цій статті ми пояснюємо, що таке середнє кубічне значення та як воно обчислюється. Крім того, ви знайдете калькулятор для обчислення кубічного середнього будь-якого набору даних.

Що таке середнє кубічне?

Кубічне середнє є мірою центральної позиції в описовій статистиці. Середнє кубічне дорівнює кубічному кореню із середнього арифметичного з кубів даних.

Таким чином, формула для кубічного середнього має такий вигляд:

половина кубика

Зауважте, що цю формулу можна використовувати, лише якщо дані не згруповані. Щоб обчислити кубічне середнє, коли дані згруповано в інтервали, оцінку кожного класу потрібно помножити на його абсолютну частоту. Формула кубічного середнього для згрупованих даних має вигляд:

\displaystyle\overline{x_c}=\sqrt[3]{\frac{1}{N}\sum_{i=1}^N x_i^3\cdot f_i} = \sqrt[3]{\frac{x_1^3\cdot f_1 +x_2^3\cdot f_2 +\dots +x_N^3\cdot f_N}{N}}

Де x i — позначка класу інтервалу, а f i — його абсолютна частота.

Кубічне усереднення дуже чутливе до великих значень, тому що куби великих чисел мають набагато вищі значення, ніж куби малих чисел, тому в кубічному усередненні більше значення надається великим числам, ніж малим.

Середнє кубічне значення використовується для визначення терміну служби певних частин машини.

Обчислення кубічного середнього дуже схоже на обчислення середнього квадратичного, і насправді вони мають деякі спільні властивості. Ви можете побачити, що це таке:

Як розрахувати середнє кубічне

Щоб обчислити середнє кубічне, необхідно виконати наступні кроки:

  1. Обчисліть куб кожного статистичного даного.
  2. Додайте всі куби, розраховані на попередньому кроці.
  3. Розділіть результат на загальну кількість елементів даних у вибірці.
  4. Знайдіть корінь кубічний із попереднього значення.
  5. Отриманий результат є середнім кубічним значенням статистичної вибірки.

👉 Ви можете скористатися калькулятором нижче, щоб обчислити середнє кубічне будь-якого набору даних.

Приклад кубічного середнього

Враховуючи математичне визначення середнього кубічного, ми потренуємося розв’язувати покрокову вправу на цей тип середнього.

  • Обчисліть середнє кубічне таких даних: 3, 5, 7, 2, 9, 1

Для отримання кубічного середнього необхідно застосувати його формулу:

\displaystyle\overline{x_c}=\sqrt[3]{\frac{1}{N}\sum_{i=1}^N x_i^3} = \sqrt[3]{\frac{x_1^3+x_2^3+x_3^3+x_4^3+x_5^3+x_6^3}{N}}

Тепер підставляємо дані з вправи у формулу і обчислюємо середнє кубічне:

\displaystyle\overline{x_c} =\sqrt[3]{\frac{3^3+5^3+7^3+2^3+9^3+1^3}{6}}=5,9

Кубічне середнє є досить особливим типом середнього, оскільки воно використовується в дуже небагатьох випадках. Ви можете побачити, які всі типи панчіх є за наступним посиланням:

Калькулятор кубічного середнього

Введіть дані з будь-якої статистичної вибірки в наступний калькулятор, щоб обчислити її кубічне середнє. Дані повинні бути розділені пробілом і введені крапкою як десятковим роздільником.

Додати коментар

Ваша e-mail адреса не оприлюднюватиметься. Обов’язкові поля позначені *