Як обчислити залишкову стандартну помилку в r
Щоразу, коли ми встановлюємо модель лінійної регресії в R, модель набуває такої форми:
Y = β 0 + β 1 X + … + β i
де ϵ — помилка, яка не залежить від X.
Незалежно від того, як X можна використовувати для прогнозування значень Y, у моделі завжди буде випадкова помилка. Одним із способів вимірювання дисперсії цієї випадкової помилки є використання залишкової стандартної помилки , яка є способом вимірювання стандартного відхилення залишків ϵ.
Залишкова стандартна помилка регресійної моделі обчислюється наступним чином:
Залишкова стандартна помилка = √ SS залишки / df залишки
золото:
- Залишки SS : залишкова сума квадратів.
- residual df : залишкові ступені свободи, розраховані як n – k – 1, де n = загальна кількість спостережень і k = загальна кількість параметрів моделі.
Є три методи, які ми можемо використовувати для обчислення залишкової стандартної помилки регресійної моделі в R.
Спосіб 1: аналіз резюме моделі
Перший спосіб отримати залишкову стандартну помилку — це просто підібрати модель лінійної регресії, а потім використати команду summary() , щоб отримати результати моделі. Тоді просто знайдіть «залишкову стандартну помилку» внизу виведення:
#load built-in mtcars dataset data(mtcars) #fit regression model model <- lm(mpg~disp+hp, data=mtcars) #view model summary summary(model) Call: lm(formula = mpg ~ disp + hp, data = mtcars) Residuals: Min 1Q Median 3Q Max -4.7945 -2.3036 -0.8246 1.8582 6.9363 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 30.735904 1.331566 23.083 < 2nd-16 *** available -0.030346 0.007405 -4.098 0.000306 *** hp -0.024840 0.013385 -1.856 0.073679 . --- Significant. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.127 on 29 degrees of freedom Multiple R-squared: 0.7482, Adjusted R-squared: 0.7309 F-statistic: 43.09 on 2 and 29 DF, p-value: 2.062e-09
Ми бачимо, що залишкова стандартна помилка становить 3,127 .
Спосіб 2. Використовуйте просту формулу
Інший спосіб отримати залишкову стандартну помилку (RSE) полягає в тому, щоб підібрати модель лінійної регресії, а потім використати таку формулу для розрахунку RSE:
sqrt( deviance (model)/df. residual (model))
Ось як реалізувати цю формулу в R:
#load built-in mtcars dataset data(mtcars) #fit regression model model <- lm(mpg~disp+hp, data=mtcars) #calculate residual standard error sqrt( deviance (model)/df. residual (model)) [1] 3.126601
Ми бачимо, що залишкова стандартна помилка становить 3,126601 .
Спосіб 3: Використовуйте покрокову формулу
Інший спосіб отримати залишкову стандартну помилку полягає в тому, щоб підібрати модель лінійної регресії, а потім застосувати покроковий підхід для розрахунку кожного окремого компонента формули RSE:
#load built-in mtcars dataset data(mtcars) #fit regression model model <- lm(mpg~disp+hp, data=mtcars) #calculate the number of model parameters - 1 k=length(model$ coefficients )-1 #calculate sum of squared residuals SSE=sum(model$ residuals **2) #calculate total observations in dataset n=length(model$ residuals ) #calculate residual standard error sqrt(SSE/(n-(1+k))) [1] 3.126601
Ми бачимо, що залишкова стандартна помилка становить 3,126601 .
Як інтерпретувати залишкову стандартну помилку
Як згадувалося раніше, залишкова стандартна помилка (RSE) — це спосіб вимірювання стандартного відхилення залишків у регресійній моделі.
Чим нижче значення CSR, тим краще модель може відповідати даним (але будьте обережні з перепідгонкою ). Це може бути корисним показником для використання під час порівняння двох або більше моделей, щоб визначити, яка модель найкраще відповідає даним.
Додаткові ресурси
Як інтерпретувати залишкову стандартну помилку
Як виконати множинну лінійну регресію в R
Як перехресно перевірити продуктивність моделі в R
Як обчислити стандартне відхилення в R