Імовірність частоти (або частотист)
У цій статті ми пояснюємо, що це таке та як розрахувати ймовірність частоти (або ймовірність частоти). Ви знайдете приклад частотної ймовірності та, крім того, зможете побачити різницю між частотною ймовірністю та теоретичною ймовірністю.
Що таке ймовірність частоти?
Імовірність частоти , також звана ймовірністю частоти , — це довгострокова очікувана відносна частота елементарної події у випадковому експерименті.
Щоб обчислити ймовірність частоти події, експеримент необхідно провести велику кількість разів і розділити кількість отриманих сприятливих випадків на загальну кількість проведених повторень.
Чим частіше експеримент повторюється, тим точнішою буде отримана ймовірність частоти. Тому цей тип ймовірності зазвичай розраховується за допомогою комп’ютерних програм, які моделюють тисячі ітерацій і здатні аналізувати їх за дуже короткий час.
З математичної точки зору формула ймовірності частоти — це межа N при нескінченності s , поділена на N , де N — загальна кількість експериментів, а s — кількість отриманих сприятливих випадків.
Не хвилюйтеся, якщо ви не розумієте формулу, тому що неможливо повторювати той самий експеримент нескінченно багато разів, тому що ми ніколи не завершимо його. Це стосується того факту, що потрібно розрахувати ймовірність частоти з великою кількістю повторів.
Як ви бачите, ймовірність частоти обчислюється за допомогою тієї самої формули відносної частоти, хоча концептуально вони означають різні речі.
Приклад імовірності частоти
Щоб краще зрозуміти цю концепцію, ми побачимо, як обчислюється ймовірність частоти, розв’язуючи вправу крок за кроком. У будь-якому випадку, оскільки значення ймовірності частоти нелегко зрозуміти, якщо у вас виникли запитання, ви можете залишити їх нижче в коментарях.
- Обчисліть імовірність частоти елементарних подій, які складають випадковий досвід кидання кубика.
Існує шість можливих результатів під час кидання кубика (1, 2, 3, 4, 5 і 6), тому теоретична ймовірність кожної елементарної події дорівнює:
Отже, щоб вирішити цю вправу, нам потрібно змоделювати запуск кілька разів і записати результати в частотну таблицю. Наприклад, ви можете використовувати програмне забезпечення Excel.
Щоб ви могли зрозуміти важливість кількості проведених експериментів, ми спочатку змоделюємо десять запусків, потім сто і, нарешті, тисячу. Таким чином, результати, отримані в результаті моделювання 10 випадкових кидків кубика, такі:
Як бачите, ймовірності частоти, отримані моделюванням лише десяти кидків, не схожі на теоретичні ймовірності.
Але коли ми збільшуємо кількість експериментів, ці два показники стають більш схожими, подивіться на симуляцію 100 запусків:
Тепер ймовірність частоти, розрахована для кожного числа на кубику, більш схожа на його теоретичну ймовірність, однак ми все ще отримуємо дуже різні значення.
Нарешті, ми виконуємо ту саму процедуру, але симулюємо 1000 запусків:
Як ми бачимо в останній таблиці, тепер значення частотних ймовірностей дуже близькі до теоретичних ймовірностей.
Підсумовуючи, чим більше ми збільшуємо кількість проведених експериментів, тим ближче значення частоти ймовірності події буде до його теоретичної ймовірності появи . Це правило визначається як закон великих чисел , який стверджує, що чим більше число ітерацій, тим більше експериментальні значення схожі на теоретичні.
Крім того, якщо ви порівняєте три таблиці частот, ви побачите, що ймовірність частоти не є остаточною, а змінюється залежно від кількості ітерацій. Тому ви повинні знати, як інтерпретувати отримані значення.
Імовірність частоти та теоретична ймовірність
Різниця між ймовірністю частоти та теоретичною ймовірністю (або класичною ймовірністю) полягає в тому, що ймовірність частоти обчислюється з використанням експериментальних результатів, а теоретична ймовірність обчислюється з урахуванням результатів за ідеальних умов.
Іншими словами, щоб знайти ймовірність частоти, необхідно змоделювати експеримент і виконати обчислення на основі отриманих результатів. Але щоб дізнатися теоретичну ймовірність, не потрібно проводити експеримент, а провести теоретичний розрахунок.
Формула ймовірності частоти — це кількість сприятливих випадків, отриманих в експерименті, поділена на загальну кількість спроб.
Навпаки, формула теоретичної ймовірності — це кількість сприятливих подій, поділена на загальну кількість можливих елементарних подій.
Частотна ймовірність в основному використовується в експериментах, де ймовірність кожної елементарної події невідома. Потім моделюється багато ітерацій, і ймовірності частоти використовуються для оцінки того, як часто відбуватиметься кожна подія.