Що таке поправковий коефіцієнт кінцевої сукупності?
Більшість формул, які використовуються для обчислення стандартних помилок , базуються на ідеї, що (1) вибірки відбираються з заміною або (2) вибірки відбираються з нескінченної сукупності.
У реальних дослідженнях жодна з цих ідей не відповідає дійсності. На щастя, це зазвичай не проблема, якщо розмір вибірки становить менше 5% від загального розміру сукупності.
Однак, коли розмір вибірки перевищує 5% від загальної сукупності, краще застосовувати поправку на кінцеву сукупність (часто скорочено FPC ), яка обчислюється наступним чином:
FPC = √ (Nn) / (N-1)
золото:
- N: Чисельність населення
- n: розмір вибірки
Як використовувати коефіцієнт поправки кінцевої сукупності
Щоб застосувати поправку на кінцеву генеральну сукупність, просто помножте її на стандартну помилку, яку ви використали б спочатку.
Наприклад, стандартна помилка середнього обчислюється таким чином:
Стандартна помилка середнього: s / √ n
Застосувавши поправку на кінцеву сукупність, формула набуває вигляду:
Стандартна похибка середнього: s / √ n * √ (Nn) / (N-1)
Наступні приклади ілюструють, як використовувати поправку кінцевої сукупності в різних сценаріях.
Приклад 1: Довірчий інтервал для пропорції
Дослідники хочуть оцінити частку жителів округу з 1300 осіб, які підтримують певний закон. Вони відбирають випадкову вибірку зі 100 жителів і запитують їх про їхню позицію щодо закону. Ось результати:
- Обсяг вибірки n = 100
- Частка на користь закону р = 0,56
Загалом, формула для розрахунку 95% довірчого інтервалу для частки населення така:
95% ДІ = p +/- z*(√ p(1-p) / n )
Однак розмір нашої вибірки в цьому прикладі становить 100/1300 = 7,7% населення, що перевищує 5%. Таким чином, ми повинні застосувати поправку кінцевої сукупності до нашої формули для довірчого інтервалу:
95% ДІ = p +/- z*(√ p(1-p)/n ) * √ (Nn) / (N-1)
Таким чином, наш 95% довірчий інтервал можна розрахувати як:
95% ДІ = 0,56 +/- 1,96*(√ 0,56(1-0,56) / 100 ) * √ (1300-100) / (1300-1) = [0,4665, 0,6535]
Приклад 2: Довірчий інтервал для середнього
Дослідники хочуть оцінити середню вагу певного виду серед 500 черепах. Тому вони відбирають випадкову вибірку з 40 черепах і зважують кожну з них. Ось результати:
- Обсяг вибірки n = 40
- Середня маса зразка х = 300
- Стандартне відхилення вибірки s = 18,5
Загалом формула для розрахунку 95% довірчого інтервалу для середнього значення генеральної сукупності виглядає так:
95% ДІ = x +/- t α/2 *(s/√n)
Однак розмір нашої вибірки в цьому прикладі становить 40/500 = 8% населення, що перевищує 5%. Таким чином, ми повинні застосувати поправку кінцевої сукупності до нашої формули для довірчого інтервалу:
95% ДІ = x +/- t α/2 *(s/√n) * √ (Nn) / (N-1)
Таким чином, наш 95% довірчий інтервал можна розрахувати як:
95% ДІ = 300 +/- 2,0227*(18,5/√ 40 ) * √ (500-40) / (500-1) = [294,32, 305,69]
Додаткові ресурси
Що таке довірчі інтервали?
Похибка проти стандартної похибки: у чому різниця?
Стандартне відхилення та стандартна помилка: у чому різниця?