Comment calculer un intervalle de confiance binomial en Python
Un intervalle de confiance pour une probabilité binomiale est calculé à l’aide de la formule suivante :
Intervalle de confiance = p +/- z*(√ p(1-p) / n )
où:
- p : proportion de « réussites »
- z : la valeur z choisie
- n : taille de l’échantillon
Le moyen le plus simple de calculer ce type d’intervalle de confiance en Python est d’utiliser la fonction proportion_confint() du package statsmodels :
proportion_confint(count, nobs, alpha=0.05, method='normal')
où:
- count : Nombre de réussites
- nobs : Nombre total d’essais
- alpha : niveau de signification (la valeur par défaut est 0,05)
- method : méthode à utiliser pour l’intervalle de confiance (la valeur par défaut est « normal »)
L’exemple suivant montre comment utiliser cette fonction dans la pratique.
Exemple : calculer l’intervalle de confiance binomial en Python
Supposons que nous souhaitions estimer la proportion de résidents d’un comté favorables à une certaine loi.
Nous décidons de sélectionner un échantillon aléatoire de 100 habitants et constatons que 56 d’entre eux sont favorables à la loi.
Nous pouvons utiliser la fonction proportion_confint() pour calculer l’intervalle de confiance à 95 % pour la véritable proportion de résidents qui assument cette loi dans l’ensemble du comté :
from statsmodels.stats.proportion import proportion_confint #calculate 95% confidence interval with 56 successes in 100 trials proportion_confint(count=56, nobs=100) (0.4627099463758483, 0.6572900536241518)
L’intervalle de confiance de 95 % pour la véritable proportion de résidents du comté qui soutiennent la loi est de [.4627, .6573] .
Par défaut, cette fonction utilise l’approximation normale asymptotique pour calculer l’intervalle de confiance. Cependant, nous pouvons utiliser l’argument méthode pour utiliser une méthode différente.
Par exemple, la fonction par défaut utilisée dans le langage de programmation R pour calculer un intervalle de confiance binomial est l’intervalle de score de Wilson.
Nous pouvons utiliser la syntaxe suivante pour spécifier cette méthode lors du calcul de l’intervalle de confiance en Python :
from statsmodels.stats.proportion import proportion_confint #calculate 95% confidence interval with 56 successes in 100 trials proportion_confint(count=56, nobs=100, method='wilson') (0.4622810465167698, 0.6532797336983921)
Cela nous indique que l’intervalle de confiance de 95 % pour la véritable proportion de résidents du comté qui soutiennent la loi est de [.4623, .6533] .
Cet intervalle de confiance est légèrement différent de celui calculé à l’aide de l’approximation normale.
Notez que nous pouvons également ajuster la valeur alpha pour calculer un intervalle de confiance différent.
Par exemple, nous pouvons définir alpha sur 0,10 pour calculer un intervalle de confiance de 90 % :
from statsmodels.stats.proportion import proportion_confint #calculate 90% confidence interval with 56 successes in 100 trials proportion_confint(count=56, nobs=100, alpha=0.10, method='wilson') (0.47783814499647415, 0.6390007285095451)
Cela nous indique que l’intervalle de confiance de 90 % pour la véritable proportion de résidents du comté qui soutiennent la loi est de [.4778, .6390] .
Remarque : Vous pouvez trouver la documentation complète de la fonction proportion_confint() ici .
Ressources additionnelles
Les didacticiels suivants expliquent comment effectuer d’autres opérations courantes en Python :
Comment tracer un intervalle de confiance en Python
Comment utiliser la distribution binomiale en Python