Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

5 exemples d’utilisation du théorème central limite dans la vie réelle



Le théorème central limite stipule que si nous prenons des échantillons aléatoires répétés d’une population et calculons la valeur moyenne de chaque échantillon, alors la distribution des moyennes de l’échantillon sera approximativement normalement distribuée , même si la population d’où proviennent les échantillons n’est pas normale .

Le théorème central limite stipule également que la moyenne de la distribution d’échantillonnage sera égale à la moyenne de la distribution de la population :

x = µ

Le théorème central limite est utile car il nous permet d’utiliser une moyenne d’échantillon pour tirer des conclusions sur une moyenne de population plus large.

Les exemples suivants montrent comment le théorème central limite est utilisé dans différentes situations réelles.

Exemple 1 : Économie

Les économistes utilisent souvent le théorème central limite lorsqu’ils utilisent des échantillons de données pour tirer des conclusions sur une population.

Par exemple, un économiste peut collecter un échantillon aléatoire simple de 50 individus dans une ville et utiliser le revenu annuel moyen des individus de l’échantillon pour estimer le revenu annuel moyen des individus dans l’ensemble de la ville.

Si l’économiste constate que le revenu annuel moyen des individus de l’échantillon est de 58 000 $, alors sa meilleure estimation du revenu annuel moyen réel des individus dans l’ensemble de la ville sera de 58 000 $.

Exemple 2 : Biologie

Les biologistes utilisent le théorème central limite chaque fois qu’ils utilisent des données provenant d’un échantillon d’organismes pour tirer des conclusions sur la population globale d’organismes.

Par exemple, un biologiste peut mesurer la hauteur de 30 plantes sélectionnées au hasard, puis utiliser la hauteur moyenne de l’échantillon pour estimer la hauteur moyenne de la population.

Si le biologiste constate que la hauteur moyenne de l’échantillon des 30 plantes est de 10,3 pouces, alors sa meilleure estimation de la hauteur moyenne de la population sera également de 10,3 pouces.

Exemple 3 : Fabrication

Les usines de fabrication utilisent souvent le théorème central limite pour estimer combien de produits fabriqués par l’usine sont défectueux.

Par exemple, le directeur de l’usine peut sélectionner au hasard 60 produits fabriqués par l’usine au cours d’une journée donnée et compter combien de produits sont défectueux. Il peut utiliser la proportion de produits défectueux dans l’échantillon pour estimer la proportion de tous les produits défectueux fabriqués par l’ensemble de l’usine.

S’il constate que 2 % des produits sont défectueux dans l’échantillon, alors sa meilleure estimation de la proportion de produits défectueux fabriqués par l’ensemble de l’usine est également de 2 %.

Exemple 4 : Enquêtes

Les services des ressources humaines utilisent souvent le théorème central limite lorsqu’ils utilisent des enquêtes pour tirer des conclusions sur la satisfaction globale des employés dans les entreprises.

Par exemple, le service RH d’une entreprise peut sélectionner au hasard 50 employés pour répondre à une enquête évaluant leur satisfaction globale sur une échelle de 1 à 10.

S’il s’avère que le taux de satisfaction moyen parmi les employés de l’enquête est de 8,5, alors la meilleure estimation du taux de satisfaction moyen de tous les employés de l’entreprise est également de 8,5.

Exemple 5 : Agriculture

Les agronomes utilisent le théorème central limite chaque fois qu’ils utilisent des données provenant d’échantillons pour tirer des conclusions sur une population plus large.

Par exemple, un agronome peut tester un nouvel engrais sur 15 champs différents et mesurer le rendement moyen de chaque champ.

S’il s’avère qu’un champ moyen produit 400 livres de blé, alors la meilleure estimation du rendement moyen de tous les champs sera également de 400 livres.

Ressources additionnelles

Les didacticiels suivants fournissent des informations supplémentaires sur le théorème central limite :

Introduction au théorème central limite
Calculateur du théorème central limite
Théorème central limite : les quatre conditions à remplir

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *