Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Erreur standard de la proportion : formule & Exemple



Souvent, dans les statistiques, nous cherchons à estimer la proportion d’individus dans une population présentant une certaine caractéristique.

Par exemple, nous pourrions souhaiter estimer la proportion d’habitants d’une certaine ville qui soutiennent une nouvelle loi.

Au lieu de demander à chaque résident s’il soutient la loi, nous collecterions plutôt un simple échantillon aléatoire et découvririons combien de résidents de l’échantillon soutiennent la loi.

Nous calculerions alors la proportion d’échantillon (p̂) comme suit :

Exemple de formule de proportion :

p̂ = x / n

où:

  • x : Le nombre d’individus dans l’échantillon présentant une certaine caractéristique.
  • n : Le nombre total d’individus dans l’échantillon.

Nous utiliserions ensuite cette proportion d’échantillon pour estimer la proportion de population. Par exemple, si 47 des 300 résidents de l’échantillon soutenaient la nouvelle loi, la proportion de l’échantillon serait calculée comme suit : 47/300 = 0,157 .

Cela signifie que notre meilleure estimation de la proportion de résidents dans la population qui soutiennent la loi serait de 0,157 .

Cependant, rien ne garantit que cette estimation correspondra exactement à la véritable proportion de la population, c’est pourquoi nous calculons généralement également l’ erreur type de la proportion .

Ceci est calculé comme suit :

Erreur standard de la formule de proportion :

Erreur type = √ p̂(1-p̂) / n

Par exemple, si p̂ = 0,157 et n = 300, alors nous calculerions l’erreur type de la proportion comme suit :

Erreur type de la proportion = √ .157(1-.157) / 300 = 0,021

Nous utilisons ensuite généralement cette erreur type pour calculer un intervalle de confiance pour la véritable proportion de résidents qui soutiennent la loi.

Ceci est calculé comme suit :

Intervalle de confiance pour une formule de proportion de population :

Intervalle de confiance = p̂ +/- z*√ p̂(1-p̂) / n

En regardant cette formule, il est facile de voir que plus l’erreur type de la proportion est grande, plus l’intervalle de confiance est large .

Notez que le z dans la formule est la valeur z qui correspond aux choix de niveau de confiance les plus courants :

Un niveau de confiance valeur z
0,90 1,645
0,95 1,96
0,99 2,58

Par exemple, voici comment calculer un intervalle de confiance de 95 % pour la véritable proportion d’habitants de la ville qui soutiennent la nouvelle loi :

  • IC à 95 % = p̂ +/- z*√ p̂(1-p̂) / n
  • IC à 95 % = 0,157 +/- 1,96*√ 0,157(1-0,157) / 300
  • IC à 95 % = 0,157 +/- 1,96*(0,021)
  • IC à 95 % = [ .10884 , .19816]

Ainsi, nous dirions avec un degré de confiance de 95% que la véritable proportion d’habitants de la ville qui soutiennent la nouvelle loi se situe entre 10,884% et 19,816%.

Ressources additionnelles

Erreur standard du calculateur de proportion
Intervalle de confiance pour le calculateur de proportion
Qu’est-ce qu’une proportion de population ?

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *