Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comment effectuer manuellement une ANOVA à mesures répétées



Une ANOVA à mesures répétées est utilisée pour déterminer s’il existe ou non une différence statistiquement significative entre les moyennes de trois groupes ou plus dans lesquels les mêmes sujets apparaissent dans chaque groupe.

Ce didacticiel explique comment effectuer manuellement une ANOVA à mesures répétées unidirectionnelles.

Exemple : ANOVA à mesures répétées unidirectionnelles à la main

Les chercheurs veulent savoir si trois médicaments différents entraînent des temps de réaction différents. Pour tester cela, ils mesurent le temps de réaction (en secondes) de cinq patients à chaque médicament. Les résultats sont montrés plus bas:

Étant donné que chaque patient est mesuré sur chacun des trois médicaments, nous utiliserons une ANOVA à mesures répétées unidirectionnelles pour déterminer si le temps de réaction moyen diffère entre les médicaments.

Suivez les étapes suivantes pour effectuer manuellement l’ANOVA à mesures répétées :

Étape 1 : Calculez la SST.

Tout d’abord, nous calculerons la somme totale des carrés (SST), qui peut être trouvée à l’aide de la formule suivante :

SST = s 2 total (n total -1)

où:

  • s 2 total : la variance pour l’ensemble de données
  • n total : le nombre total d’observations dans l’ensemble de données

Dans cet exemple, nous calculons le SST comme suit : (64,2667)(15-1) = 899,7

Étape 2 : Calculer la SSB

Ensuite, nous calculerons la somme des carrés (SSB), qui peut être trouvée à l’aide de la formule suivante :

SSB = Σn j ( x jx total ) 2

où:

  • Σ : un symbole grec qui signifie « somme »
  • n j : le nombre total d’observations dans le j ème groupe
  • x j : la moyenne du j ème groupe
  • x total : la moyenne de l’ensemble des données

Dans cet exemple, nous calculons SSB comme suit : (5)(26,4-22,533) 2 +(5)(25,6-22,533) 2 + (5)(15,6-22,533) 2 = 362,1

Étape 3 : Calculez le SSS.

Ensuite, nous calculerons la somme des carrés du sujet (SSS), qui peut être trouvée à l’aide de la formule suivante :

SSS =(Σr 2 k /c) – (N 2 /rc)

où:

  • Σ : un symbole grec qui signifie « somme »
  • r 2 k : somme au carré du k ème patient
  • N : le total général de l’ensemble des données
  • r : nombre total de patients
  • c : nombre total de groupes

Dans cet exemple, nous calculons SSS comme suit : ((74 2 + 42 2 + 62 2 + 92 2 + 68 2 )/3) – (338 2 /(5)(3)) = 441,1

Étape 4 : Calculez le SSE.

Ensuite, nous calculerons la somme des carrés d’erreur (SSE), qui peut être trouvée à l’aide de la formule suivante :

SSE = SST – SSB – SSS

Dans cet exemple, nous calculons le SSE comme suit : 899,7 – 362,1 – 441,1 = 96,5

Étape 5 : Remplissez le tableau ANOVA à mesures répétées.

Maintenant que nous avons SSB, SSS et SSE, nous pouvons remplir le tableau ANOVA à mesures répétées :

Source Somme des carrés (SS) df Carrés moyens (MS) F
Entre 362.1 2 181.1 15.006
Sujet 441.1 4 110.3
Erreur 96,5 8 12.1

Voici comment nous avons calculé les différents nombres du tableau :

  • df entre : #groupes – 1 = 3 – 1 = 2
  • df sujet : #participants – 1 = 5 – 1 = 4
  • Erreur df : df entre * df sujet = 2*4 = 8
  • MS entre : SSB / df entre = 362,1 / 2 = 181,1
  • Sujet MS : sujet SSS / df = 441,1 / 4 = 110,3
  • Erreur MS : erreur SSE / df = 96,5 / 8 = 12,1
  • F : MS entre / erreur MS = 181,1 / 12,1 = 15,006

Étape 6 : Interprétez les résultats.

La statistique du test F pour cette ANOVA à mesures répétées unidirectionnelles est de 15,006 . Pour déterminer s’il s’agit d’un résultat statistiquement significatif, nous devons le comparer à la valeur critique F trouvée dans letableau de distribution F avec les valeurs suivantes :

  • α (niveau de signification) = 0,05
  • DF1 (degrés de liberté du numérateur) = df entre = 2
  • DF2 (degrés de liberté du dénominateur) = erreur df = 8

Nous trouvons que la valeur critique de F est de 4,459 .

Étant donné que la statistique du test F dans le tableau ANOVA est supérieure à la valeur critique F dans le tableau de distribution F, nous rejetons l’hypothèse nulle. Cela signifie que nous disposons de suffisamment de preuves pour affirmer qu’il existe une différence statistiquement significative entre les temps de réponse moyens des médicaments.

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *