Asymétrie positive
Cet article explique ce qu’est l’asymétrie positive dans les statistiques. Vous trouverez donc un exemple de distribution de probabilité positivement asymétrique et comment déterminer si une distribution est positivement asymétrique.
Qu’est-ce que l’asymétrie positive ?
En statistiques, l’asymétrie positive est une caractéristique des distributions de probabilité qui, dans leur graphique, ont la queue à droite plus longue que la queue à gauche.
Autrement dit, une distribution positivement asymétrique signifie qu’elle a des valeurs plus différentes à droite de la moyenne.
Bien que la définition de l’asymétrie positive semble subjective, il existe plusieurs formules pour déterminer quand l’asymétrie d’une distribution est positive. Ci-dessous, nous verrons comment est calculée l’asymétrie ou la symétrie d’une fonction de probabilité.
Exemple d’asymétrie positive
Pour bien comprendre la signification de l’asymétrie positive, cette section montre un exemple de distribution avec une asymétrie positive :
La courbe présente une asymétrie positive car il y a beaucoup plus de valeurs à droite de la moyenne qu’à gauche. Comme vous pouvez le voir sur le graphique, la barre représentée en vert est beaucoup plus grande que la barre orange.
Autres types d’asymétrie
Outre l’asymétrie positive, il faut savoir qu’il existe d’autres types d’asymétrie dans les statistiques. Une courbe de probabilité peut également être asymétrique négativement ou même exactement symétrique.
- Asymétrie positive : la queue de la distribution s’allonge vers la droite, c’est-à-dire qu’il y a plus de valeurs différentes à droite de la moyenne.
- Asymétrie négative : la queue de la distribution s’allonge vers la gauche, c’est-à-dire qu’il y a plus de valeurs différentes à gauche de la moyenne.
- Symétrie : La distribution a le même nombre de valeurs à gauche et à droite de la moyenne.
Comment savoir s’il s’agit d’une asymétrie positive
Traditionnellement, on explique que si la moyenne est supérieure à la médiane, alors la distribution est positivement asymétrique. Cependant, cette propriété n’est pas toujours satisfaite. Ainsi, pour déterminer l’asymétrie d’une distribution, vous devez calculer le coefficient d’asymétrie de Fisher.
Le coefficient d’asymétrie de Fisher est calculé avec la formule suivante :
Ou équivalent:
Où
C’est un espoir mathématique , la moyenne arithmétique et l’ écart type .
Le signe du coefficient de Fisher permet de déterminer l’asymétrie de la distribution :
- Si le coefficient d’asymétrie de Fisher est positif, la distribution est positivement asymétrique.
- Si le coefficient d’asymétrie de Fisher est négatif, la distribution est asymétrique négativement.
- Si la distribution est symétrique, le coefficient d’asymétrie de Fisher est égal à zéro (l’inverse n’est pas vrai).