Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comparaison des scores Z de différentes distributions



Un score z vous indique de combien d’écarts types une valeur de donnée individuelle tombe par rapport à la moyenne. Il est calculé comme suit :

Score z = (x – μ) / σ

où:

  • x : valeur de donnée individuelle
  • μ : moyenne de la population
  • σ : écart type de la population

Un score z pour une valeur individuelle peut être interprété comme suit :

  • Score z positif : la valeur individuelle est supérieure à la moyenne.
  • Score z négatif : la valeur individuelle est inférieure à la moyenne.
  • Un z-score de 0 : la valeur individuelle est égale à la moyenne.

Les scores Z sont particulièrement utiles lorsque nous souhaitons comparer la position relative de deux points de données provenant de deux distributions différentes. Pour illustrer cela, considérons l’exemple suivant.

Exemple : comparaison des scores Z

Les scores à un certain examen universitaire sont normalement distribués avec une moyenne μ = 80 et un écart type σ = 4. Duane obtient un 84 à cet examen.

Les scores à un autre examen universitaire sont normalement distribués avec une moyenne μ = 85 et un écart type σ = 8. Debbie obtient un 90 à cet examen.

Par rapport à leur propre répartition des notes aux examens, qui a obtenu les meilleurs résultats à leur examen ?

Pour répondre à cette question, nous pouvons calculer le z-score du score à l’examen de chaque personne :

Score z de Duane = (x – μ) / σ = (84 – 80) / 4 = 4 / 4 = 1

Score z de Debbie = (x – μ) / σ = (90 – 85) / 8 = 5/8 = 0,625

Bien que Debbie ait obtenu un score plus élevé, le score de Duane est en réalité plus élevé par rapport à la répartition de son examen particulier.

Pour comprendre cela, il est utile de visualiser la situation. Voici la note de Duane par rapport à la répartition de son examen particulier :

Exemple de comparaison des scores z avec la courbe de distribution normale

Et voici la note de Debbie par rapport à la répartition de son examen :

Comparaison des scores z de deux distributions

Remarquez à quel point le score de Debbie est plus proche de la moyenne de sa population que celui de Duane. Bien qu’elle ait un score globalement plus élevé, son score z est inférieur simplement parce que le score moyen à son examen particulier est plus élevé.

Cet exemple illustre pourquoi les scores z sont si utiles pour comparer les valeurs de données de différentes distributions : les scores z prennent en compte la moyenne et les écarts types des distributions, ce qui nous permet de comparer les valeurs de données de différentes distributions et de voir laquelle est la plus élevée par rapport à leurs propres distributions.

Ressources additionnelles

Calculateur de score Z
Comparez le calculateur de scores Z

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *