Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comment effectuer le test de Dunn en Python



Un test de Kruskal-Wallis est utilisé pour déterminer s’il existe ou non une différence statistiquement significative entre les médianes de trois groupes indépendants ou plus. Elle est considérée comme l’équivalent non paramétrique de l’ ANOVA unidirectionnelle .

Si les résultats d’un test de Kruskal-Wallis sont statistiquement significatifs, il est alors approprié d’effectuer le test de Dunn pour déterminer exactement quels groupes sont différents.

Ce didacticiel explique comment effectuer le test de Dunn en Python.

Exemple : le test de Dunn en Python

Les chercheurs veulent savoir si trois engrais différents conduisent à différents niveaux de croissance des plantes. Ils sélectionnent au hasard 30 plantes différentes et les divisent en trois groupes de 10, en appliquant un engrais différent à chaque groupe. Au bout d’un mois, ils mesurent la hauteur de chaque plante.

Après avoir effectué un test de Kruskal-Wallis, ils constatent que la valeur p globale est statistiquement significative, ce qui signifie que la croissance médiane n’est pas la même dans les trois groupes. Ensuite, ils effectuent le test de Dunn pour déterminer exactement quels groupes sont différents.

Pour effectuer le test de Dunn en Python, nous pouvons utiliser la fonction posthoc_dunn() de la bibliothèque scikit-posthocs.

Le code suivant montre comment utiliser cette fonction :

Étape 1 : Installez scikit-posthocs.

Nous devons d’abord installer la bibliothèque scikit-posthocs :

pip install scikit-posthocs

Étape 2 : Effectuez le test de Dunn.

Ensuite, nous pouvons créer les données et effectuer le test de Dunn :

#specify the growth of the 10 plants in each group
group1 = [7, 14, 14, 13, 12, 9, 6, 14, 12, 8]
group2 = [15, 17, 13, 15, 15, 13, 9, 12, 10, 8]
group3 = [6, 8, 8, 9, 5, 14, 13, 8, 10, 9]
data = [group1, group2, group3]

#perform Dunn's test using a Bonferonni correction for the p-values
import scikit_posthocs as sp
sp.posthoc_dunn(data, p_adjust = 'bonferroni')

               1	       2	       3
1	1.000000	0.550846	0.718451
2	0.550846	1.000000	0.036633
3	0.718451	0.036633	1.000000

Notez que nous avons choisi d’utiliser une correction de Bonferroni pour les valeurs p afin de contrôler le taux d’erreur par famille , mais d’autres choix potentiels pour l’argument p_adjust incluent :

  • sidak
  • Holm-Sidak
  • simes hochberg
  • hommel
  • fdr_bh
  • fdr_by
  • fdr_tsbh

Reportez-vous à la documentation pour plus de détails sur chacune de ces méthodes d’ajustement de la valeur p.

Étape 3 : Interprétez les résultats.

À partir des résultats du test de Dunn, nous pouvons observer ce qui suit :

  • La valeur p ajustée pour la différence entre le groupe 1 et le groupe 2 est de 0,550846 .
  • La valeur p ajustée pour la différence entre le groupe 1 et le groupe 3 est de 0,718451 .
  • La valeur p ajustée pour la différence entre le groupe 2 et le groupe 3 est de 0,036633 .

Ainsi, les deux seuls groupes qui sont statistiquement significativement différents à α = 0,05 sont les groupes 2 et 3.

Ressources additionnelles

Une introduction au test de Dunn pour les comparaisons multiples
Comment effectuer le test de Dunn dans R

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *