Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comment trouver le coefficient de détermination (R-carré) dans R



Le coefficient de détermination (communément noté R 2 ) est la proportion de la variance de la variable de réponse qui peut être expliquée par les variables explicatives dans un modèle de régression.

Ce didacticiel fournit un exemple de la manière de rechercher et d’interpréter R 2 dans un modèle de régression dans R.

Connexes :Qu’est-ce qu’une bonne valeur R au carré ?

Exemple : trouver et interpréter R-carré dans R

Supposons que nous disposions de l’ensemble de données suivant contenant des données sur le nombre d’heures étudiées, les examens préparatoires passés et les résultats des examens reçus pour 15 étudiants :

#create data frame
df <- data.frame(hours=c(1, 2, 2, 4, 2, 1, 5, 4, 2, 4, 4, 3, 6, 5, 3),
                 prep_exams=c(1, 3, 3, 5, 2, 2, 1, 1, 0, 3, 4, 3, 2, 4, 4),
                 score=c(76, 78, 85, 88, 72, 69, 94, 94, 88, 92, 90, 75, 96, 90, 82))

#view first six rows of data frame
head(df)

  hours prep_exams score
1     1          1    76
2     2          3    78
3     2          3    85
4     4          5    88
5     2          2    72
6     1          2    69

Le code suivant montre comment ajuster un modèle de régression linéaire multiple à cet ensemble de données et afficher la sortie du modèle dans R :

#fit regression model
model <- lm(score~hours+prep_exams, data=df)

#view model summary
summary(model)

Call:
lm(formula = score ~ hours + prep_exams, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-7.9896 -2.5514  0.3079  3.3370  7.0352 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  71.8078     3.5222  20.387 1.12e-10 ***
hours         5.0247     0.8964   5.606 0.000115 ***
prep_exams   -1.2975     0.9689  -1.339 0.205339    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.944 on 12 degrees of freedom
Multiple R-squared:  0.7237,	Adjusted R-squared:  0.6776 
F-statistic: 15.71 on 2 and 12 DF,  p-value: 0.0004454

Le R au carré du modèle (affiché tout en bas de la sortie) s’avère être 0,7237 .

Cela signifie que 72,37 % de la variation des résultats aux examens peut s’expliquer par le nombre d’heures étudiées et le nombre d’examens préparatoires passés.

Notez que vous pouvez également accéder à cette valeur en utilisant la syntaxe suivante :

summary(model)$r.squared

[1] 0.7236545

Comment interpréter la valeur R au carré

Une valeur R au carré sera toujours comprise entre 0 et 1.

Une valeur de 1 indique que les variables explicatives peuvent parfaitement expliquer la variance de la variable de réponse et une valeur de 0 indique que les variables explicatives n’ont pas la capacité d’expliquer la variance de la variable de réponse.

En général, plus la valeur R au carré d’un modèle de régression est grande, plus les variables explicatives sont capables de prédire la valeur de la variable de réponse.

Consultezcet article pour plus de détails sur la façon de déterminer si une valeur R au carré donnée est considérée comme « bonne » ou non pour un modèle de régression donné.

Connexes : Comment calculer le R-carré ajusté dans R

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *