Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comment interpréter Sig. Valeurs (bilatérales) dans SPSS



Souvent, lorsque vous effectuez des tests statistiques dans SPSS, la table de sortie contient un Sig. valeur (bilatérale) .

Cette valeur représente la valeur p bilatérale du test.

Si cette valeur est inférieure à votre niveau de signification (les choix courants sont 0,05 ou 0,01), vous pouvez alors rejeter l’hypothèse nulle de votre test.

Ce didacticiel fournit des exemples sur la façon d’interpréter le Sig. valeur (bilatérale) de différents tests statistiques.

Exemple 1 : test t sur un échantillon

Un test t sur un échantillon est utilisé pour tester si la moyenne d’une population est égale ou non à une certaine valeur.

Par exemple, supposons qu’un botaniste veuille savoir si la hauteur moyenne d’une certaine espèce de plante est égale à 15 pouces. Elle prélève un échantillon aléatoire de 12 plantes et enregistre chacune de leurs hauteurs en pouces.

Elle utilise ensuite cet échantillon pour effectuer un test t sur un échantillon avec les hypothèses nulles et alternatives suivantes :

  • H 0 : μ = 15 (la moyenne réelle de la population est égale à 15 pouces)
  • H A : μ ≠ 15 (la moyenne réelle de la population n’est pas égale à 15 pouces)

Elle effectue ce test t sur un échantillon dans SPSS et obtient les résultats suivants :

Un exemple de résultat de test t dans SPSS

Le Sig. La valeur (bilatérale) est 0,120 .

Cela représente la valeur p bilatérale qui correspond à une valeur de -1,685 avec 11 degrés de liberté.

Puisque la valeur p du test (0,120) n’est pas inférieure à 0,05, nous ne parvenons pas à rejeter l’hypothèse nulle.

En d’autres termes, nous n’avons pas suffisamment de preuves pour affirmer que la véritable hauteur moyenne de cette espèce de plante est différente de 15 pouces.

Exemple 2 : test t à deux échantillons

Un test t à deux échantillons est utilisé pour tester si les valeurs moyennes de deux populations sont égales ou non.

Par exemple, supposons que les chercheurs souhaitent savoir si un nouveau traitement du carburant entraîne une modification du kilométrage moyen par gallon d’une voiture donnée. Pour tester cela, ils mènent une expérience dans laquelle 12 voitures reçoivent le nouveau traitement de carburant et 12 voitures ne le reçoivent pas.

Les chercheurs effectuent un test t à deux échantillons avec les hypothèses nulles et alternatives suivantes :

  • H 0 : μ 1 = μ 2 (le mpg moyen entre les deux populations est égal)
  • H 1 : μ 1 ≠ μ 2 (le mpg moyen entre les deux populations n’est pas égal)

Ils effectuent un test t à deux échantillons dans SPSS et obtiennent les résultats suivants :

Interprétation du résultat de deux échantillons de test t dans SPSS

Le Sig. La valeur (bilatérale) est 0,167 .

Cela représente la valeur p bilatérale qui correspond à une valeur de -1,428 avec 22 degrés de liberté.

Puisque la valeur p du test (0,167) n’est pas inférieure à 0,05, nous ne parvenons pas à rejeter l’hypothèse nulle.

En d’autres termes, nous n’avons pas suffisamment de preuves pour affirmer que le véritable mpg moyen est différent entre les voitures qui reçoivent un traitement et celles qui ne le font pas.

Ressources additionnelles

Les didacticiels suivants expliquent comment effectuer divers tests statistiques dans SPSS :

Comment effectuer un test t sur un échantillon dans SPSS
Comment effectuer un test t à deux échantillons dans SPSS
Comment effectuer un test t pour échantillons appariés dans SPSS

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *