Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comment identifier un test de gauche par rapport à un test de droite



En statistiques, nous utilisons des tests d’hypothèse pour déterminer si une affirmation concernant un paramètre de population est vraie ou non.

Chaque fois que nous effectuons un test d’hypothèse, nous écrivons toujours une hypothèse nulle et une hypothèse alternative , qui prennent les formes suivantes :

H 0 (hypothèse nulle) : paramètre de population = ≤, ≥ une certaine valeur

H A (hypothèse alternative) : paramètre de population <, >, ≠ une certaine valeur

Il existe trois types différents de tests d’hypothèse :

  • Test bilatéral : L’hypothèse alternative contient le signe « ≠ »
  • Test de gauche : l’hypothèse alternative contient le signe « < »
  • Test de droite : l’hypothèse alternative contient le signe « > »

Notez qu’il suffit de regarder le signe dans l’hypothèse alternative pour déterminer le type de test d’hypothèse.

Test de gauche : l’hypothèse alternative contient le signe « < »

Test de droite : l’hypothèse alternative contient le signe « > »

Les exemples suivants montrent comment identifier les tests à gauche et à droite dans la pratique.

Exemple : test de gauche

Supposons que l’on suppose que le poids moyen d’un certain gadget produit dans une usine est de 20 grammes. Cependant, un inspecteur estime que le poids moyen réel est inférieur à 20 grammes.

Pour tester cela, il pèse un échantillon aléatoire simple de 20 widgets et obtient les informations suivantes :

  • n = 20 widgets
  • x = 19,8 grammes
  • s = 3,1 grammes

Il effectue ensuite un test d’hypothèse en utilisant les hypothèses nulles et alternatives suivantes :

H 0 (hypothèse nulle) : μ ≥ 20 grammes

H A (hypothèse alternative) : μ < 20 grammes

La statistique du test est calculée comme suit :

  • t = ( X – µ) / (s/√ n )
  • t = (19,8-20) / (3,1/√ 20 )
  • t = -.2885

Selon le tableau de distribution t , la valeur critique t à α = 0,05 et n-1 = 19 degrés de liberté est – 1,729 .

Puisque la statistique du test n’est pas inférieure à cette valeur, l’inspecteur ne parvient pas à rejeter l’hypothèse nulle. Il ne dispose pas de preuves suffisantes pour affirmer que le poids moyen réel des widgets produits dans cette usine est inférieur à 20 grammes.

Exemple : test à queue droite

Supposons que l’on suppose que la hauteur moyenne d’une certaine espèce de plante est de 10 pouces. Cependant, un botaniste affirme que la véritable hauteur moyenne est supérieure à 10 pouces.

Pour tester cette affirmation, elle mesure la hauteur d’un échantillon aléatoire simple de 15 plantes et obtient les informations suivantes :

  • n = 15 plantes
  • x = 11,4 pouces
  • s = 2,5 pouces

Elle effectue ensuite un test d’hypothèse en utilisant les hypothèses nulles et alternatives suivantes :

H 0 (hypothèse nulle) : μ ≤ 10 pouces

H A (hypothèse alternative) : μ > 10 pouces

La statistique du test est calculée comme suit :

  • t = ( X – µ) / (s/√ n )
  • t = (11,4-10) / (2,5/√ 15 )
  • t = 2,1689

Selon le tableau de distribution t , la valeur critique t à α = 0,05 et n-1 = 14 degrés de liberté est de 1,761 .

La statistique du test étant supérieure à cette valeur, le botaniste peut rejeter l’hypothèse nulle. Elle dispose de suffisamment de preuves pour affirmer que la véritable hauteur moyenne de cette espèce de plante est supérieure à 10 pouces.

Ressources additionnelles

Comment lire le tableau de distribution t
Un exemple de calculateur de test t
Calculateur de test t à deux échantillons

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *