Personnaliser les préférences

Nous utilisons des cookies pour vous aider à naviguer efficacement et à exécuter certaines fonctions. Vous trouverez ci-dessous des informations détaillées sur tous les cookies sous chaque catégorie de consentement.

Les cookies classés comme « Nécessaires » sont stockés sur votre navigateur car ils sont essentiels pour activer les fonctionnalités de base du site.... 

Toujours actif

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Aucun cookie à afficher.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Aucun cookie à afficher.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Aucun cookie à afficher.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Aucun cookie à afficher.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Aucun cookie à afficher.

Comment déterminer une variance égale ou inégale dans les tests t



Lorsqu’on veut comparer les moyennes de deux groupes indépendants, on peut choisir entre deux tests différents :

Test t de Student : suppose que les deux groupes de données sont échantillonnés à partir de populations qui suivent une distribution normale et que les deux populations ont la même variance.

Test t de Welch : suppose que les deux groupes de données sont échantillonnés à partir de populations qui suivent une distribution normale, mais il ne suppose pas que ces deux populations ont la même variance .

Ainsi, si les deux échantillons n’ont pas la même variance, il est préférable d’utiliser le test t de Welch.

Mais comment déterminer si les deux échantillons ont la même variance ?

Il existe deux manières de procéder :

1. Utilisez la règle empirique de variance.

En règle générale, si le rapport entre la plus grande variance et la plus petite variance est inférieur à 4, nous pouvons alors supposer que les variances sont approximativement égales et utiliser le test t de Student.

Par exemple, supposons que nous ayons les deux exemples suivants :

L’échantillon 1 a une variance de 24,86 et l’échantillon 2 a une variance de 15,76.

Le rapport entre la plus grande variance de l’échantillon et la plus petite variance de l’échantillon serait calculé comme suit :

Rapport = 24,86 / 15,76 = 1,577

Ce rapport étant inférieur à 4, on pourrait supposer que les écarts entre les deux groupes sont à peu près égaux.

Ainsi, nous pourrions procéder à la réalisation du test t de Student pour déterminer si les deux groupes ont la même moyenne.

2. Effectuez un test F.

Un test F est un test statistique formel qui utilise les hypothèses nulles et alternatives suivantes :

H 0 : Les échantillons ont des variances égales.

H A : Les échantillons n’ont pas des variances égales.

La statistique du test est calculée comme suit :

F = s 1 2 / s 2 2

où s 1 2 et s 2 2 sont les variances de l’échantillon.

Si la valeur p qui correspond à la statistique du test est inférieure à un certain niveau de signification (comme 0,05), alors nous disposons de preuves suffisantes pour affirmer que les échantillons n’ont pas des variances égales.

Supposons encore une fois que nous ayons les deux exemples suivants :

Pour effectuer un test F sur ces deux échantillons, nous pouvons calculer la statistique du test F comme suit :

  • F = s 1 2 / s 2 2
  • F = 24,86 / 15,76
  • F = 1,577

Selon le calculateur de distribution F , une valeur F de 1,577 avec le numérateur df = n 1 -1 = 12 et le dénominateur df = n 2 -1 = 12 a une valeur p correspondante de 0,22079.

Puisque cette valeur p n’est pas inférieure à 0,05, nous ne parvenons pas à rejeter l’hypothèse nulle. En d’autres termes, nous pouvons supposer que les variances des échantillons sont égales.

Ainsi, nous pourrions procéder à la réalisation du test t de Student pour déterminer si les deux groupes ont la même moyenne.

Ressources additionnelles

Si vous décidez d’effectuer le test t de Student, vous pouvez utiliser les didacticiels suivants comme références :

Et si vous décidez d’effectuer le test t de Welch, vous pouvez utiliser les didacticiels suivants comme références :

Ajouter un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *